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ABSTRACT

The Higgs Boson as a Window to Beyond the Standard Model

Roberto Vega-Morales

In this thesis we examine the Higgs boson and its possible connections to physics beyond

the standard model. In particular, we study the Higgs couplings to pairs of neutral

electroweak gauge bosons in the charged lepton final state known as the ‘golden channel’.

We assess the ability of this channel to distinguish between various hypotheses for the

nature of the newly discovered scalar particle. We also explore an explicit extension of the

standard model which can explain various puzzles which remain unanswered even after

the discovery of the Higgs boson. Specifically this model explains the existence of neutrino

masses as well as a stable dark matter candidate and the non-observation of processes

which violate overall lepton number. We examine in detail the implications of this model

on Higgs phenomenology at the LHC as well as dark matter detection experiments.
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CHAPTER 1

Introduction

The recent discovery of a Higgs boson at the LHC [1, 2] with properties resembling

those predicted by the Standard Model (SM) gives strong indication that the final missing

piece of the SM is now in place. In particular, the mechanism responsible for Electroweak

Symmetry Breaking (EWSB) and generating masses for the Z and W vector bosons

appears to have been established. Even with this amazing discovery there are still many

outstanding theoretical and phenomenological questions which suggest that there must

be physics Beyond the Standard Model (BSM). As we investigate in this thesis, the Higgs

boson offers the exciting possibility of acting as a window to this new physics through

various avenues which are experimentally testable in the coming years. We investigate a

subset of these possibilities and begin by discussing them briefly below before a detailed

examination in the following chapters.

1.1. The Standard Model and the Need For New Physics

In the SM [3, 4] all of the interactions among the particles are determined by SU(3)c⊗

SU(2)W ⊗U(1)Y gauge invariance (along with Lorentz invariance and renormalizability).

The mechanism responsible for EWSB is due to the vacuum expectation value (VEV) of

a spin-0 electroweak doublet carrying hypercharge Y = 1/2 which can be represented as,

H ≡ (1, 2, 1/2) (1.1)
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under SU(3)c ⊗ SU(2)W ⊗ U(1)Y . The masses of the W and Z bosons follow from the

scalar kinetic operator,

L ∼ (DµH)†(DµH) (1.2)

after EWSB which gives the symmetry breaking pattern SU(2)W ⊗ U(1)Y → U(1)em.

The masses for all fermions in the SM can be generated through Yukawa interactions of

the form,

L ∼ HfLfR. (1.3)

Thus masses for all particles in the SM can be generated with just a single electroweak

doublet, with the exception of neutrinos for which no right-handed partner has been

detected thus far. With the recent measurement of a Higgs mass ∼ 125 GeV all free

parameters in the SM have now been measured, making the SM fully predictive. It is a

renormalizable theory so in principal there is no need for additional new physics below

scales where gravitational effects become important.

However, there are both theoretical and experimental reasons to suspect there must be

BSM physics. As mentioned above, in the SM there is no explanation for the experimen-

tally observed fact that neutrinos have a non-zero mass. Since the SM does not contain

a right-handed neutrino, it can not generate a mass for the neutrinos in a similar manner

to the quarks and charged leptons. There is also much indirect evidence for the existence

of Dark Matter (DM) which makes up the majority of the matter density in the universe.

Since in the SM there is no viable DM candidate, any explanation of the nature of DM

must include BSM physics.
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There are of course an endless number of ways to extend the SM to explain the many

puzzles which still persist. In the final chapter of this thesis we discuss a possible extension

of the SM where the accidental global symmetry in the SM associated with overall lepton

number is promoted to an abelian gauge symmetry. This model provides an explanation

for the generation of neutrino masses and the existence and stability of DM as well as

the fact that no lepton number violating processes have been observed to date. We also

examine the DM phenomenology of this model as well as its potential signatures at the

LHC. In particular we study in detail how this model will affect decays of the Higgs

boson and how the various partial widths might be modified from their SM predictions.

There are of course many other puzzles which remain unanswered, such as solutions to

the hierarchy problem, but we do not address those in this thesis.

1.2. The Higgs as a Probe of New Physics

The discovery of the Higgs itself offers the exciting opportunity to not only uncover

the mechanism responsible for EWSB, but perhaps the first signs of BSM physics in its

production and decays. As more data is collected at the LHC and experiments begin

‘precision’ studies on the Higgs, small deviations from the SM prediction could be the

first indications of new physics. A thorough understanding and exploration of possible

new physics which could lead to deviations in the Higgs couplings to SM particles is

of paramount importance. Of these couplings, those to electroweak gauge bosons are

particularly important since they are a probe of the EWSB mechanism. In addition,

these are an ideal place for the effects of new physics to manifests themselves, especially
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through loop effects. In this thesis we explore various aspects of the Higgs couplings to

neutral electroweak gauge bosons.

In particular we examine Higgs couplings to ZZ, Zγ and γγ gauge boson pairs which

then decay to electrons (e) and muons (µ); the so called ‘Higgs Golden Channel’. This

channel is vital to Higgs studies because it is very precisely measured at the LHC. Fur-

thermore, because of the four body final state each event contains a wealth of information

including important correlation effects which allow one to deduce detailed properties about

the scalar coupling to the neutral gauge bosons. We analyze all of these correlations and

in particular isolate the different interference effects which occur between the intermediate

gauge bosons. Our studies are based on an analytic computation of the fully differential

cross sections for both the signal and background which we present in detail.

Because of the large number of observables in each event and the precision with which

it is measured the golden channel lends itself to analytic methods, which often gives greater

intuition and theoretical control. This makes the golden channel ideal for studies using the

Matrix Element Method (MEM) to assess the discriminating power of the golden channel

at the LHC. An MEM can be used in a variety of ways such as performing a signal from

background extraction [5] or, as we will see below, performing simple hypothesis testing

between different signals. Once enough data is collected, one can also use an MEM to do

parameter extraction of the Higgs couplings in the golden channel1.

This thesis is organised as follows : In Chap. 2 we present detailed analytic calculations

of both signal and background fully differential cross sections in the 2e2µ Higgs golden

channel. We also examine various 1D and 2D differential spectrums. In Chap. 3 we

1Currently part of ongoing work with Joe Lykken and collaborators at CMS.



14

perform an MEM study of Higgs couplings to neutral ZZ and Zγ as a function of the

number of observed events. In Chap. 4 we present an explicit model which explains a

subset of the many puzzles which can not be solved within the framework of the SM.

Finally in the Appendix we examine the various golden channel differential spectrums in

more detail and show a variety of plots of 1D and 2D spectrums. All of the material in

this thesis can be found in more detail in [6], [7], and [8].
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CHAPTER 2

Scrutinizing the Higgs Signal and Background in the 2e2µ

Golden Channel

2.1. Introduction

With the recent discovery of a new resonance at the LHC [1, 2] the focus now shifts to

the determination of its detailed properties including its spin, CP, and electroweak (EW)

quantum numbers. It has been shown in recent studies [5, 6, 9–12] and also emphasized

for quite some time [13–17], that the decay to four charged leptons is a powerful channel

in accomplishing this goal. Because of the experimental precision with which this channel

is measured, it offers one of the few opportunities to use analytic methods to analyze the

data. We thus seek to extend previous analytic calculations of both the signal and the

standard model (SM) background and present completely general, leading order (LO) fully

differential cross sections for the 2e2µ final state mediated by intermediate Z and γ gauge

bosons. In addition to performing discovery/exclusion analysis and signal hypothesis

testing one could, with enough data, experimentally determine all possible couplings of a

spin-0 scalar to pairs of neutral electroweak (EW) gauge bosons in one multi-parameter

fit using these expressions.

Analytic expressions are ideal for use in the matrix element method (MEM) taking

full advantage of all of the kinematic information in the event. One can then use the
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fully differential cross section to build a likelihood function [18, 19] to be used as a dis-

criminant. For a recent study of the golden channel comparing existing leading order

MEM-based approaches and software [20], along with providing code which calculates

kinematic discriminants based on the Madgraph [21] matrix element squared see [22]. We

view this ‘analytic approach’ as equivalent and complementary to these other approaches.

These analytic expressions also allow for more flexibility in performing multidimensional

fits to determine coupling values which will be useful when performing parameter ex-

traction. Our parametrization allows for easy implementation of various hypothesis tests

as well as the addition of NLO effects which can also be implemented into an MEM

framework [23, 24].

For the signal we compute the fully differential decay width for the process ϕ →

ZZ + Zγ + γγ → 2e2µ where ϕ is a spin-0 scalar. We allow for the most general CP

odd/even mixtures and include all interference between intermediate vector bosons. While

these expressions are applicable to the newly discovered boson at 125 GeV, they are also

applicable for any new scalar decaying to neutral gauge bosons. This allows one to consider

a variety of hypotheses which can be tested against one another. It should be emphasized

however that for optimal performance, even when testing between two different signal CP

and spin hypothesis, one should also include the background in the discriminant since in

any given sample it is not known with full certainty which are background and which are

signal events. Thus we seek to provide both signal and background distributions which

can be used together to build a complete likelihood.

For the background we compute the fully differential cross section for the qq → 2e2µ

process. This includes the contributions from all the intermediate vector bosons through
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both t-channel pair production and the singly resonant four-lepton production s-channel

process qq → Z → 2e2µ. We include all interference effects between the intermediate

vector bosons as well the interference between the s-channel and t-channel diagrams which

can affect the differential distributions as we will see below. Also, unlike the analytic

calculations in [5, 25] of the golden channel background differential cross section, these

expressions are valid for a much larger energy range for the four lepton invariant mass as

well as the invariant mass of each lepton pair. In particular, since these also include the

γγ contribution one can probe lower values in the differential mass spectrums, which as

we will see is a highly discriminating region. The intermediate vector bosons are allowed

to be on or off-shell and in what follows we do not distinguish between the two. We

do not discuss the 4e and 4µ final states explicitly, but in some kinematic regimes the

interference effects between identical final state particles can be sizable [22]. We leave an

inclusion of these final states to future work.

Although other channels can also probe the tensor couplings of a resonance to neutral

gauge bosons, the golden channel, with a four body final state has the advantage of

extra kinematic variables, such as the azimuthal angle between lepton decay planes. This

variable would be unavailable for example in the γγ final state. In addition to offering

more kinematic observables, the golden channel offers the unique opportunity to test all

of the possible tensor couplings including any potential interference effects between the

different operators in one direct (and very precise) fully correlated measurement without

any recourse to theoretical input (other than the production cross section of course). This

allows for stringent tests of the SM to be performed and perhaps allow us to uncover new

physics which may be hiding in subtle effects within the golden channel.
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In addition to presenting the calculation of the fully differential cross sections we

examine various singly and doubly differential distributions and elucidate the subtle in-

terference effects between the different contributions to the signal and background. Of

course a proper treatment of the golden channel requires careful study of detector resolu-

tion and acceptance effects, but we leave that to ongoing analyses.

2.2. Four Lepton Events

The kinematics of four lepton (4`) events are described in detail in many places in the

literature and here we use the convention found in [9]. We comment on the kinematics

briefly and point out that in the case of the background the physical interpretation of

the kinematic variables is not as intuitive as in the case of previous studies which only

considered the t-channel ZZ contribution. Now since we include the contribution from

resonant four lepton production, the lepton pairs do not necessarily reconstruct to a

physical particle. In this case, resonant production of a Z (or possibly γ) is followed by

decay to charged leptons one of which radiates a Z/γ, which again decays to charged

leptons (see Fig. 2.4). The first lepton pair which radiates the second vector boson does

not reconstruct to the Z boson four momentum, which in this case is also equal to the

invariant mass of the 4` system. The kinematics remain unchanged, but now we must

interpret the angles defined in the lepton pair rest frame with respect to the direction of

momentum of the lepton pair system as opposed to that of one of the gauge bosons. Thus,

we have the following more general interpretations for the kinematic variables defined in

the 4` rest frame;

• M1,2 – The invariant mass of the two lepton pair systems.
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• Θ – The ‘production angle’ between the momentum vectors of the lepton pair

which reconstructs to M1 and the total 4` system momentum.

• θ1,2 – Polar angle of the momentum vectors of e−, µ− in the lepton pair rest frame.

• Φ1 – The angle between the plane formed by the M1 lepton pair and the ‘produc-

tion plane’ formed out of the momenta of the incoming partons and the momenta

of the two lepton pair systems.

• Φ – The angle between the decay planes of the final state lepton pairs in the rest

frame of the 4` system.

These variables are all independent subject to the constraint (M1 + M2) ≤
√
s where

s is the invariant mass squared of the 4` system. We have also ignored the irrelevant

azimuthal production angle.

In the case of the signal events one can replace ‘lepton pair’ momentum with Z or γ

momentum since in those cases, both lepton pairs do indeed decay from a vector boson

and the intuition follows that found in Fig 2.1. The same can be said for background

events which proceed through t-channel pair production. In these cases, the angle Φ1

defines the azimuthal angle between the di-boson production plane and the plane formed

by the lepton pair which reconstructs to M1 and Θ is the vector boson production angle.

Other than this more subtle interpretation of the various kinematic variable however, in

practice the definitions of these variables are left unchanged from the definitions found

in [9] which we follow from here on.
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Θ

Figure 2.1. Definition of angles in the four lepton CM frame X.

2.3. Signal

In this section we present the calculation of the signal fully differential cross section

and examine the differential mass spectra for several signal hypotheses. We take our signal

to be a general spin-0 scalar and consider all possible couplings to any combination of Z

and γ pairs allowing for mixtures of both CP even and odd interactions. Previous studies

have analytically computed the ZZ [9, 10] contribution to the golden channel, but as far

as we are aware, none consider the contributions from the Zγ and γγ intermediate states.

There are also interference effects between the intermediate state which are not present

when γ is not allowed to decay. As we will see, these effects can manifest themselves in

the kinematic distributions. Of course for a SM Higgs, the Zγ and γγ contributions to

the golden channel are expected to be small, but this need not be true for a general scalar

or if the discovered resonance turns out to have enhanced couplings to Zγ or to γγ. How

large these effects are once one takes into account detector and acceptance effects deserves

careful study, but we leave this for ongoing work.
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The most general couplings of a spinless particle to two gauge bosons with four mo-

menta k1 and k2 can be expressed as,

iΓµνij = v−1
(
A1ijm

2
Zg

µν + A2ij(k1 · k2g
µν − kν1k

µ
2 )

+A3ijεµναβk
α
1 k

β
2

)
(2.1)

where ij = ZZ,Zγ, or γγ. The A1,2,3 are dimensionless arbitrary complex form factors

and v is the Higgs vacuum expectation value (vev), which we have chosen as our overall

normalization. For the case of a scalar coupling to Zγ or γγ electromagnetic gauge

invariance requires A1 = 0, while for ZZ it can be generated at tree level as in the SM

or by higher dimensional operators. We have chosen to write the vertex in this form to

make the connection with operators in the Lagrangian which may generate them more

transparent. For example the following list of operators may generate a coupling as in

Eq.(2.1),

L ∼ 1

v
ϕ
(
ghm

2
ZZ

µZµ + gZZ
µνZµν + g̃ZZ

µνZ̃µν

+ gZγF
µνZµν + g̃ZγF

µνZ̃µν

+ gγF
µνFµν + g̃γF

µνF̃µν + ...
)

(2.2)

where Zµ is the Z field while Vµν = ∂µVν − ∂νVµ the usual bosonic field strengths. The

dual field strengths are defined as Ṽµν = 1
2
εµνρσV

ρσ and the ... is for operators of dimen-

sion higher than five. For a given model many of these are of course zero. If ϕ is the

Standard Model Higgs, then gh = i, while gZ , gZγ and gγγ are 6= 0, but loop induced and

small. Detailed studies of the ZZ contribution to the golden channel mediated through
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the operators with coefficients gh, gZ were conducted in [10, 11, 26]. The operators cor-

responding to gZγ were studied in [6] for the golden channel final state and in [27] for the

`+`−γ final state and both were shown to be useful discriminators.

Other recent studies of these operators, though not only through the golden channel

final state, have also been done. The pseudo scalar couplings g̃Z , g̃Zγ, g̃γ were studied

recently in the context of the newly discovered resonance in [28] where it was shown that

a purely CP odd scalar is disfavored as the new resonance. The analysis of [29] shows

that with a fit of the γγ, ZZ∗, and WW ∗ rates, as well as the absence of a large anomaly

in continuum Zγ, that the scenario of the four lepton decays being due to gZ or gZγ is

strongly disfavored. While these statements contain few assumptions, they are still model

dependent and should be confirmed by direct measurements.

Even if the newly discovered resonance appears to be ‘SM like’, it is still possible that

it can have contributions to the 2e2µ channel coming from operators other than gh which

are slightly enhanced relative to the SM prediction. Here we are motivated by asking

what information can be extracted from this channel with out any a-priori reference to

other measurements or theoretical input. In addition, there still exists the possibility that

another scalar resonance will be discovered which can also decay to EW gauge boson pairs.

In this case it may have comparable contributions from the various operators. Thus we

allow for all operators in Eq. (2.2) to contribute simultaneously including all interference

effects between the ZZ, Zγ, and γγ intermediate states. Because the vertex in terms of

arbitrary complex form factors is more general than the Lagrangian, for purposes of the

calculation we use Eq.(2.1) explicitly. Below we summarize the details of the calculation.
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Figure 2.2. Feynman diagrams contributing to ϕ→ 2`12`2. The arrows are
to indicate the direction of momentum flow.

2.3.1. Calculation

To compute the process ϕ → ZZ + Zγ + γγ → 4` we include the diagrams shown in

Fig. 2.2 and parametrize the scalar coupling to gauge bosons as in Eq. 2.1. The total

amplitude can be written as,

M =MZZ +MZγ +MγZ +Mγγ (2.3)

which upon squaring gives,

|M|2 = |MZZ |2 + |MZγ|2 + |MγZ |2 + |Mγγ|2

+2Re
(
MZZM∗

Zγ +MZZM∗
γZ +MZZM∗

γγ

MγγM∗
Zγ +MγγM∗

γZ +MZγM∗
γZ

)
.

(2.4)
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An explicit calculation of all of these terms is overwhelming, but things can be simplified

greatly by taking the final state leptons to be massless. In this case, the momentum

dependent terms in the Z boson propagator numerators do not contribute. This leads

to the propagators of both Z and γ to have the same Lorentz structure, namely the

Minkowski metric gµν . This implies that all of these terms have the same general Lorentz

structure. The only difference from these terms comes from Breit-wigner factors in the

propagators as well as in the couplings of the vector bosons, some of which are zero thus

‘turning off’ the contributions from their corresponding Lorentz structure. To see this, let

us consider the amplitude for any combination of intermediate Z and γ shown in Fig.2.2,

Mij = uj

(
iγγ(gj2RPR + gj2LPL)

)
vj

(
−igνγ

M2
2 −m2

j + imjΓj

)

Γµνij

(
−igµσ

M2
1 −m2

i + imiΓi

)
ui
(
iγσ(gi1RPR + gi1LPL)

)
vi (2.5)

where i, j label Z or γ while 1 and 2 label the final state leptons and can in principal be e or

µ. In the 4e and 4µ case one must also include the interference between identical particles, but

we do not address that issue here. Upon squaring the amplitude and summing over final state

lepton polarizations we can obtain a general amplitude squared which encompasses any of terms

in Eq.(2.4) and is given by,

MijM∗ij = (D1iD2jD
∗
1i
D∗

2j
)−1

(gµσT σσ1ii
gµσ)(gνγT γγ2jj

gνγ)Γµνij Γ∗µν
ij

(2.6)
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where

T σσ
1ii

= (gi1Rg
i
1R + gi1Lg

i
1L)Tr( 6 p1γ

σ 6 p1γ
σ)/2

+(gi1Rg
i
1R − gi1Lgi1L)Tr( 6 p1γ

σ 6 p1γ
σγ5)/2

D1i = M2
1 −m2

i + iΓimi

(2.7)

and Γµνij are given in Eq.(2.1). The giR,L are at this point general left and right handed couplings

of a ‘Z-like’ spin-1 vector boson to a pair of fermions. The bars are to indicate that the corre-

sponding index belongs to the conjugated amplitude and are distinct indices from the un-bared

ones. We treat all couplings at every vertex encountered when tracing over the Dirac strings

as distinct as well as all Breit-Wigner factors so for any amplitude squared term there can in

principal be four different vector bosons as intermediate states. In the case of the photon we

have of course gγR = gγL = −eem and mγ = Γγ = 0. Since at this stage the various couplings

and masses are completely general, Eq.(2.6) applies to any process where a scalar decays to two

spin-1 vector bosons which then decay to massless fermions through ‘Z-like’ couplings.

Expanding out the terms in Eq.(2.6) we can write the amplitude squared as,

MijM∗ij = C++
ijij

L++
ijij

+ C+−
ijij

L+−
ijij

+

C−+
ijij

L−+
ijij

+ C−−
ijij

L−−
ijij

=
∑
ab

Cab
ijij
Lab
ijij

(2.8)

where a, b = (+,−) with a and b corresponding to the fermion pairs labeled 1 and 2 respectively

and

C±±
ijij

=
(gi1Rg

i
1R±g

i
1Lg

i
1L)(gj2Rg

j
2R±g

j
2Lg

j
2L)

4(D1iD2jD∗
1i
D∗

2j
)

L±±
ijij

= (gµσT
σσ
1±gµσ)(gνγT

γγ
2±gνγ)Γµνij Γ∗µν

ij
.

(2.9)
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The T σσ1± are the Dirac traces found in Eq.(2.7) and ± indicates whether the trace ends with a

γ5 (−) or not (+). The full amplitude squared can then be built out of the objects1 in Eq.(2.9),

(MijM∗ij)
ab = Cab

ijij
Lab
ijij

. (2.10)

Since all of the angular information is contained in the Lab
ijij

we can take advantage of the simple

nature of these terms to perform the desired integration before summing over ± and the various

vector boson intermediate states, after which analytic integration becomes unmanageable. Ex-

pressions for the Lab
ijij

are obtained in terms of invariant dot products and CM variables. These

objects can be used to build the differential cross section of any scalar decay to four massless

fermions via two spin-1 vector bosons. From these one can also reproduce analytic results for

other processes such as the semi-leptonic decay of the Higgs to `νjj [30].

The final fully differential decay width can now be written as,

dΓϕ
dM2

1 dM
2
2 dΩ

= Π4`
∑
ab

( ∑
ijij

Cab
ijij
Lab
ijij

)
(2.11)

where dΩ = dcΘdcθ2dcθ1dΦdΦ1 (cθ = cos θ) and Π4` is the final state lepton four body phase

space derived following [31] and given by,

Π4` = (
1

2π
)2(

1

32π2
)2(

1

32πs
)

·
(

1 +
(M2

1 −M2
2 )2

s2
− 2(M2

1 +M2
2 )

s

)1/2
. (2.12)

We can obtain the differential mass spectrum2 via,

dΓϕ
dM2

1 dM
2
2

= Π4`
∑
ab

( ∑
ijij

Cab
ijij

(
∫
dΩLab

ijij
)
)
. (2.13)

1Expressions for the various coefficients and Lorentz structure can be obtained by emailing the corre-
sponding author.
2We give an analytic expression for a particular hypothesis in the Appendix.
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We note that we perform the sum over vector bosons before the sum over ± which allows for

greater simplification of the expressions. We can now go on to examine the differential mass

spectrum for different signal hypothesis. In the Appendix we show various singly and doubly

differential spectra for a number of signal hypotheses. We also give in Eq.(A.1) of the Appendix,

an explicit expression for the doubly differential mass spectrum of a scalar with SM-like ZZ

couplings and both CP even and CP odd Zγ couplings including all interference effects.

2.3.2. The Differential Mass Spectra

In this section we examine the singly differential mass spectra for various signal hypotheses and

give a feel for how M1 and M2 might be able to distinguish between the different operators in

Eq.(2.2). Explicitly we consider the following cases3,

• 1: SM including Zγ and γγ (A1ZZ = 2, A2Zγ = 0.007, A2γγ = −0.008)4

• 2: SM coupling to ZZ plus enhanced Zγ and γγ (A1ZZ = 2, A2Zγ = 6 ∗ 0.007, A2γγ =

−1.3 ∗ 0.008)

• 3: SM coupling to ZZ plus CP odd couplings to γγ and Zγ (A1ZZ = 2, A3Zγ =

0.01, A3γγ = 0.01)

• 4: CP odd/even mixed coupling to ZZ only (A1ZZ = 2, A3ZZ = 0.1)

• 5: General Scalar (A1ZZ = 0.1, A2ZZ = 1, A2Zγ = 0.01, A2γγ = 0.01, A3ZZ = 1, A3Zγ =

0.01, A3γγ = 0.01)

where we also show the values for the couplings chosen in Eq.(2.1). Couplings whose values are

not shown in a given hypotheses are taken to be zero and we take all values at
√
s = mh = 125

GeV. Note that all of these couplings can be interpreted in terms of the couplings in Eq.(2.2) if

we assume only up to dimension 5 operators contribute.

3We have validated these cases with FeynRules/CalcHEP [20, 32] and the Monte Carlo generator intro-
duced in [9].
4Values obtained from [29] after translating to our parametraziation.
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We obtain the differential mass spectra via Eq.(2.13), followed by integration over M1 or M2,

and compare them for different hypotheses. These are shown in Fig. 2.3 for two ranges. The first

range we take 4 GeV< M1,2 < 120 GeV treating M1 and M2 symmetrically shown in the top

plot. In this case we only show the M1 distribution since it is identical to the M2 distribution

and only show the lower mass region above which the different cases are very similar.

We also consider the more ‘experimental’ cut requiring a wide window around the Z boson

mass 40 GeV < M1 < 120 GeV and 4 GeV < M2 < 120 GeV for the ‘off-shell’ vector boson. In

this case the M1 distribution is indistinguishable for the separate cases so we only show the M2

distribution. One can see, that in particular in the low mass region, these variables can be highly

discriminating between the different cases. We point out also that, if values of M2 . 10 GeV can

be probed, the requirement of a window around a Z boson may decrease sensitivity to certain

hypotheses which have a sizable γγ or Zγ component such as hypothesis 5.

Our lower bound on M2 is chosen to be 4 GeV since lower values of M2 runs the risk

of contamination from J/ψ states whose mass is ∼ 3 GeV. We emphasize that experimental

analyses should be made to push down as far possible since as can be seen in Fig. 2.3, one

needs to be able to probe M2 below ∼ 10 GeV in order to discriminate between a SM scalar

(hypothesis 1) and one with enhanced Zγ and γγ couplings (hypothesis 2) for example. Though

current experimental signal searches in the golden do not yet consider such low values for M2,

it seems feasible to push the M2 cut down further as was done in the CMS observation of the

Z → `+`−`+`− process [33]. We therefore include this highly interesting region here and hope

that it may motivate efforts to push the M2 reach lower. We leave a complete analysis including

detector effects to an ongoing study.
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Figure 2.3. In the top plot we take 4 GeV < M1,2 < 120 GeV while in
the bottom plot we take the range 40 GeV < M1 < 120 GeV, 4 GeV
< M2 < 120 GeV (assuming M1 > M2) at

√
s = mh = 125 GeV when

integrating over phase space. The SM is shown in blue, but is essentially
indistinguishable from hypothesis 3 (see text).

2.4. Background

The dominant irreducible background to the golden channel comes from qq annihilation

into gauge bosons. At energies ∼ 125 GeV the dominant contribution comes from t-channel

Zγ production. However, as we will see contributions from s-channel Z → 4` diagrams can

effect the angular distributions such as the distribution of the angle between the decay planes

Φ defined in Sec.3.1. Furthermore, we include the ZZ and γγ contributions since in principal

these are always present and may have observable interference effects due to the fact that they
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add at the amplitude level when decaying to charged leptons. In addition, the inclusion of

these contributions allows for considering a much larger energy range in one fully differential

cross section than can be considered when including only the t and u channel contributions.

Of course NLO effects, including the gg initiated process [34–36] will contribute as well, but

these are expected to be small and mainly only effect the ‘input’ invariant mass (and overall

normalization) for the fully differential cross sections. We will examine this point below.

It should also be noted that ideally one would like to include the 4e and 4µ final states which

in some kinematic regimes can have non-negligible contributions from interference between final

state particles [22]. The inclusion of this channel would allow for greater sensitivity for the

same amount of luminosity. However, because of the interference between identical final states

in this case, the Lorentz structure becomes severely more complicated and we thus leave this

calculation for future work.

2.4.1. Calculation

The background calculation is much more involved than the signal calculation due to a higher

number of Feynman diagrams in addition to a more complicated Lorentz structure. As in the

signal case the amplitude can be written as,

M =MZZ +MZγ +MγZ +Mγγ . (2.14)

Now however, each of these amplitudes breaks down into six ‘sub-amplitudes’. To see this, let

us first consider the ZZ mediated decays. There are three diagrams which contribute to the

2e2µ process shown in Fig. 2.4. First there is the t-channel contribution shown in the bottom

diagram. This contribution (and its u-channel counterpart) has been computed previously for

both on-shell [25] and off-shell [5] Z bosons. The second contribution comes from resonant

2e2µ production proceeding through the top two diagrams. Each of these diagrams also has
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Figure 2.4. Feynman diagrams contributing to qq → ZZ → 2e2µ and qq →
Z → 2e2µ. The arrows are to indicate the direction of momentum flow.

a corresponding ‘crossed’ diagram taking into account the other possibility for attaching the

vector boson lines. This gives six diagrams for the ZZ contribution to the golden channel.

Similarly, there are six more for the γγ contribution plus six for Zγ and six for γZ giving a total

of twenty four diagrams. At first this many diagrams can seem intractable, but as we will see,

when organized in a proper manner the calculation is relatively straightforward with the help

of Tracer [37] to perform the Lorentz contraction.

To begin we first note that the six diagrams can be ‘twisted’ and arranged into the form

found in Fig. 2.5 where we now allow the vector bosons to take on any Z or γ, but once chosen

are treated as fixed. We use the conventions indicated in the diagrams and in particular refer to

the diagrams (a), (c), and (e) as ‘t-channel’ type diagrams and (b), (d), and (f) as ‘u-channel’.

This is not to be confused with the typical vocabulary for this process which refers to diagrams

(a) and (b) as t and u channel and diagrams (c) − (f) as s-channel. We find this re-naming

convenient for organizing and reducing the many terms which need to be computed for the

differential cross section. The Lorentz structure for all of these amplitudes is clearly the same.
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ē

e

kqt

j

i

q

q̄

2̄

2

1̄

1

k1t

j

i

1̄

1

2̄

2

q̄

q

k2t

j

i

2̄

2

q̄

q

1̄

1

Z

Z

q

q̄

µ̄

µ

ē
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ē

e

kqt

j

i

q

q̄

2̄

2

1̄

1

k1t

j

i

1̄

1

2̄

2

q̄

q

k2t

j

i

2̄

2

q̄

q

1̄

1

kqu

i

j

q

q̄

1̄

1

2̄

2

k1u

i

j

1̄

1

q̄

q

2̄

2

k2u

i

j

2̄

2

1̄

1

q̄

q

kqu

i

j

q

q̄

1̄

1

2̄

2

k1u

i

j

1̄

1

q̄

q

2̄

2

k2u

i

j

2̄

2

1̄

1

q̄

q

kqu

i

j

q

q̄

1̄

1

2̄

2

k1u

i

j

1̄

1

q̄

q

2̄

2

k2u

i

j

2̄

2

1̄

1

q̄

q

(a)

(b)

(c) (f)

(e)

(d)

Z

Z

q

q̄

µ̄

µ

ē
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Figure 2.5. Feynman diagrams contributing to qq → ViVj → 2`12`2 and
qq → Vi → 2`12`2. Note that diagrams (c) − (f) are in fact s-channel
diagrams so the fermions labeled by 1 and 2 are not to be confused as being
in the initial state. This is taken into account in how the various momenta
are assigned as indicated by the arrows.

One needs only to keep proper track of how the various momentum are routed through each

diagram. We can see this by considering the amplitude explicitly. Using the massless initial

quark and final state lepton approximation we can write any of the amplitudes in Fig. 2.5 as,

Mn
Xij = uZ

(
iγσ(gjZRPR + gjZLPL)

)
vZ

(
−igµσ

M2
Z−m

2
j+imjΓj

)
vX
(
iγµ(giXRPR + giXLPL)

) ( i 6kXn
k2Xn

)(
iγν(gjXRPR + gjXLPL)

)
uX(

−igνγ
M2
Y −m

2
i+imiΓi

)
uY
(
iγγ(giY RPR + giY LPL)

)
vY

(2.15)
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where we label the amplitude by the ‘long’ dirac string, in this case X. The labels X/Y/Z =

1, 2, q where 1, 2 are for final state lepton pairs while q is for the initial state quarks. The

i, j = Z, γ label the vector bosons and n = t, u labels the t and u-channel diagrams in our

new vocabulary. The invariant masses are defined as M2
Y = (pY + pY )2. The internal fermion

momentum are given in terms of external momentum by,

kqt = pq − (p1 + p1), kqu = pq − (p2 + p2)

k1t = −p1 − (p2 + p2), k1u = (pq + pq)− p1

k2t = (pq + pq)− p2, k2u = −p2 − (p1 + p1) . (2.16)

Note that the invariant masses MY and MZ do not necessarily correspond to the invariant mass

formed by the final state lepton pairs, as they do in the signal case and in previous analytic

calculations of the golden channel background which neglect the s-channel diagrams. Now with

the inclusion of the resonant four lepton processes in (c) − (f) we have for these diagrams

M2
Y/Z = M2

q = s which is equal to the invariant mass of the four lepton system. To obtain

any of the physical amplitudes one simply assigns the appropriate labels to Eq.(2.15) as well as

the appropriate momenta. Thus for example for diagram (c) we have X → 1, Y → q, Z → 2,

and n → t. To switch from t-channel type to u-channel diagrams (staying in the same row

in Fig.2.5) one simply takes t → u and γσ ↔ γγ . Of course at this stage all these labels are

arbitrary meaning that the amplitude in Eq.(2.15) applies to any process with this topology

and Lorentz structure. Note that for the Z propagators we drop the momentum dependent

terms since they do not contribute in the massless lepton approximation. As mentioned in the

signal case, for the photon gγR = gγL and mγ = Γγ = 0, but for now we take the couplings and

propagators as general.
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As in the case of the signal, the next step is to find a generalized amplitude squared for

any two of the six diagrams. Although there are in principal thirty six terms when squaring the

amplitudes, these organize themselves into only two distinct types of Lorentz structure. The first

type is found when multiplying any two diagrams in the same row of Fig. 2.5. This is the Lorentz

structure found in our previous calculations of the ZZ contribution in which only diagramsMqt

and Mqu are included (the top row). The square of M1t +M1u and M2t +M2u (second and

third rows) will also exhibit this Lorentz structure. The second type of Lorentz structure is

obtained when taking the product of any two diagrams in different rows. In the conventional

language, interference between the first and second row or first and third row corresponds to

interference between the t-channel di-boson production amplitudes and the s-channel diagrams.

Interference between the second and third row corresponds to interference between the two types

of s-channel diagrams. We first discuss the ‘squared’ terms where the amplitudes are contained

within the same row before examining the interference terms between rows.

Using the conventions just described, we can write the product of any two amplitudes within

a row as

Mn
XijMm∗

Xij
= (DY iDZjD

∗
Y i
D∗
Zj

)−1

(gµσT σσY iigµσ)(gνγT γγZjjgνγ)T νµµν
Xijijnm

(2.17)

where the T σσ
Y ii

and DY i are defined similarly to those in Eq.(2.7) and the long Dirac string is

given by,

T νµµν
Xijijnm

= (giXRg
j
XRg

i
XRg

j
XR + giXLg

j
XLg

i
XLg

j
XL)/2

·Tr( 6 pXγν 6 kXnγµ 6 pXγµ 6 kXmγν) +

(giXRg
j
XRg

i
XRg

j
XR − giXLg

j
XLg

i
XLg

j
XL)

·Tr(6 pXγν 6 kXnγµ 6 pXγµ 6 kXmγνγ5)/2.

(2.18)
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Expanding out the terms in Eq.(2.17) we can organize in a manner similar to Eq.(2.8) and write

the amplitude squared as,

Mn
XijMm∗

Xij
=
∑
abc

Cabc
XXijij

LabcXXnm (2.19)

where again a, b, c = (+,−) in the order X,Y, Z and

C±±±
XXijij

= (8DY iDZjD
∗
Y i
D∗
Zj

)−1

(giXRg
j
XRg

i
XRg

j
XR ± giXLg

j
XLg

i
XLg

j
XL)

·(giY RgiY R ± giY LgiY L)(gjZRg
j
ZR ± g

j
ZLg

j
ZL)

L±±±XXnm = (gµσT
σσ
Y±gµσ)(gνγT

γγ
Z±gνγ)T νµµνXnm±.

(2.20)

The T σσY,Z± are the Dirac traces found in Eq.(2.7) while the T νµµνXnm± are those found in (2.18).

Again ± indicates whether the trace ends with a γ5 (−) or not (+). We note that unlike in the

signal case, when organized in this way (essentially by powers of γ5) the gauge structure com-

pletely factors from the Lorentz structure. This allows us to sum over all possible intermediate

vector bosons at this stage to write,

Mn
XMm∗

X =
∑
ijij

Mn
XijMm∗

Xij

=
∑
ijij

∑
abc

Cabc
XXijij

LabcXXnm

=
∑
abc

(
∑
ijij

Cabc
XXijij

)LabcXXnm =
∑
abc

CabcXXL
abc
XXnm .

(2.21)

This simplifies things greatly and in particular the objects CabcXX now contain all of the information

regarding the intermediate vector bosons including the interference effects between the different

processes. These will serve as overall coefficients for the various Lorentz structure pieces.
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We are now in a position to examine the interference terms. Let us take the product of any

two diagrams not in the same row. One can show explicitly,

Mn
XijMm∗

Y ij
= (DY iDZjD

∗
Zi
D∗
Xj

)−1

(gµσT νµγXijjn
gνγ)(gνγT µνσY iijm

gµσ)T γσ
Zji

(2.22)

where the T γσ
Zii

are as before and the new Dirac strings are given by,

T νµγ
Xijjn

= (giXRg
j
XRg

j
XR + giXLg

j
XLg

j
XL)/2

·Tr( 6 pXγν 6 kXnγµ 6 pXγγ) +

(giXRg
j
XRg

j
XR − giXLg

j
XLg

j
XL)

·Tr(6 pXγν 6 kXnγµ 6 pXγγγ5)/2.

(2.23)

The distinct Lorentz structure found here as compared to that found in Eq.(2.17) is due to the

different path taken when tracing over the fermonic strings.

Again we expand out the terms in Eq.(2.22) to obtain,

Mn
XijMm∗

Y ij
=
∑
abc

Cabc
XY ijij

LabcXY nm (2.24)

where,

C±±±
XY ijij

= (8DY iDZjD
∗
Zi
D∗
Xj

)−1(gjZRg
i
ZR ± g

j
ZLg

i
ZL)

·(giXRg
j
XRg

j
XR ± giXLg

j
XLg

j
XL)(giY Rg

i
Y Rg

j
Y R ± giY LgiY Lg

j
Y L)

L±±±XY nm = (gµσT
νµγ
Xn gνγ)(gνγT

µνσ
Y m gµσ)T γσZ .

(2.25)

and the T νµγXn are the traces found in Eq.(2.23). As mentioned above, since the gauge and Lorentz

structure factor completely we are free to perform the sum over the intermediate vector bosons
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at this stage once again to obtain the various Lorentz structure coefficients,

Mn
XMm∗

Y =
∑
ijij

Mn
XijMm∗

Y ij
=

∑
abc

(
∑
ijij

Cabc
XY ijij

)LabcXY nm =
∑
abc

CabcXY L
abc
XY nm .

(2.26)

Thus again all of the information concerning the intermediate vector bosons is contained in CabcXY .

We now have all of the pieces5 necessary to build the total amplitude squared of the diagrams

in Fig. 2.5 including all contributions from the intermediate vector bosons. Explicitly we have,

|Mq +M1 +M2|2

=
∑
abc

∑
nm

((
Cabcqq L

abc
qqnm + Cabc11 L

abc
11nm + Cabc22 L

abc
22nm

)
+2Re

(
Cabcq1 L

abc
q1nm + Cabc12 L

abc
12nm + Cabc2q L

abc
2qnm

)) (2.27)

where the sum over intermediate vector bosons has been already implicitly performed and the

sum over n,m which includes the t and u channel contributions is shown explicitly (note that

this also factors from the vector boson sum). The CabcXY coefficients are in general complex due to

the factor of i multiplying the decay width in the massive vector boson propogators. The Lorentz

structure is either purely real or purely imaginary depending on whether the term contains an

even or odd number of traces ending in γ5. These traces give an overall factor of i (and an

epsilon tensor). Thus if LabcXY nm contains an even number of these traces, then it is purely real

and if it contains an odd number it is purely imaginary. The squared Lorentz structure LabcXXnm

however is strictly real as are the squared coefficients CabcXX . Taking this into account, we can

5Expressions for the various coefficients and Lorentz structure can be obtained by emailing the corre-
sponding author.
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write for Eq.(2.27) the final amplitude squared as,

|M4`|2 = |Mq +M1 +M2|2

=
1

2

even∑
abc

(
CabcqqRL

abc
qqR + Cabc11RL

abc
11R + Cabc22RL

abc
22R

)

+
even∑
abc

(
Cabcq1RL

abc
q1R + Cabc12RL

abc
12R + Cabc2qRL

abc
2qR

)

−
odd∑
abc

(
Cabcq1IL

abc
q1I + Cabc12IL

abc
12I + Cabc2qIL

abc
2qI

)
(2.28)

where we have now performed the sum over t and u channel diagrams and CabcXY R,I = CabcXY ±C∗abcXY

respectively. We have also implicitly included a factor of 1/4 from averaging over initial state

quark spins and a color factor of 1/3. The sums labeled even ≡ (+ + +,+−−,−+−,−−+)

indicate terms with even powers of γ5 and those with odd ≡ (− + +,+ − +,+ + −,− − −)

indicate terms with odd powers of γ5. Note that since the photon has vector like couplings

where gL = gR all coefficients CabcXY with a, b, or c ≡ − are zero for the γγ intermediate state.

Thus γγ only contributes to the C+++
XY coefficients (including of course when X ≡ Y ).

Previous calculations of the golden channel background, which include only the di-boson

production process, are contained within the first term Cabcqq L
abc
qq of Eq.(2.28). All the other

terms arise from the resonant four lepton production process and the interference between it

and the di-boson production process. Note that Eq.(2.28) is also more general than for just the

golden channel. In principal this expression holds for any process with the same topology and

‘Z-like’ couplings to fermions. Since we have built the expression out of a generalized Lorentz

structure with coefficients, it can easily be adapted to consider new physics contributions which

may enter with the same topology and alter some of the coefficients by an observable amount.

Thus one can imagine performing stringent tests of the SM using this parametrization to extract

the various Lorentz structure coefficients. We leave an investigation of this to future work.
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The final fully differential cross section6 is again obtained by combining the amplitude

squared with the invariant four body phase space (see Eq.(2.12)),

dσ4`
dM2

1 dM
2
2 dΩ

= Π4`|M4`|2 . (2.29)

The differential mass spectrum7 is obtained again via,

dσ4`
dM2

1 dM
2
2

= Π4`

∫
dΩ|M4`|2 . (2.30)

We now examine how the various components of the background contribute to the differential

mass spectrum.

2.4.2. The Differential Spectra

In this section we examine how the individual components of the background contribute to

the invariant mass spectrum of the four lepton system. In addition we also study how including

parton distribution functions (pdfs) and NLO corrections change the differential spectra by com-

paring normalized projections obtained from our analytic expression to Monte Carlo generated

by POWHEG [38–41] and Madgraph [21].

We first separate the background into its various components which we define as the follow-

ing,

• A: s-channel 2e2µ process

• B: t+ u-channel γγ

• C: t+ u-channel ZZ

• D: t+ u-channel Zγ

6This expression has been validated with the Madgraph matrix element squared.
7An analytic expression for the dominant component to the background is given in Eq.(A.3) of the
Appendix.
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• E: t+ u-channel ZZ/Zγ/γγ interference only

• F: ZZ + Zγ + γγ s/t-channel interference only

where now s, t, and u are used in the usual sense and the resonant s-channel 2e2µ process can

proceed through any combination of Z and γ. We first consider the relative fractions of these

components as a function of the invariant mass of the four lepton system for the range 100−600

GeV in Fig. 2.6. The dotted lines indicate when a contribution is negative, which of course only

occurs for interference terms in certain energy ranges when the interference is destructive. The

solid black line at constant value of 1 is the total partonic level qq → 2e2µ (q = u, d) background

including all interference and all intermediate vector bosons. From Fig. 2.6 one can see how the

relative contributions coming from the different components change as a function of energy.

Component C (the ZZ t + u channel) is the only piece of the background to have been

previously calculated analytically [5, 25]. This makes up the dominant contribution above the

ZZ threshold, but is negligible from 110 GeV <
√
s < 140 GeV and in fact is even smaller

than the interference terms. We also plot the spectrum if one requires a window around the Z

boson mass in the bottom plot of Fig. 2.6. The dominant component near the resonance mass

of 125 GeV is D regardless of the window on the Z mass. Except for component F , one can

see that the relative fractions are fairly insensitive to the Z window requirement except in the

range ∼ 100− 110 GeV.

The flexibility of the analytic expressions also allow us to easily isolate the contribution

coming from interference terms. Component E for example is due to the interference between

the intermediate gauge bosons in the t + u channel and is destructive over the entire range

regardless of the Z window. The interference between the resonant s-channel and the t-channel

pair production processes is shown in F and switches between constructive and destructive if

one requires a window around the Z, but otherwise is constructive. Though these components

are small it is possible for them to have subtle effects on the angular distributions such as in the
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Figure 2.6. The four lepton system invariant mass spectrum (without pdfs)
for the various components defined in the text. The dotted lines indicate
when the interference between components is destructive, thus giving a
negative contribution. In the top plot we take the ranges 4 GeV< M1,2 <
120 GeV while in the bottom plot we take the range 40 GeV< M1 <
120 GeV and 10 GeV< M2 < 120 GeV while taking M1 > M2.

modulation of the azimuthal angle Φ (See Fig. A.4) and may be particularly interesting to study

in the range 100 GeV .
√
s . 110 GeV. The expressions for most of the components themselves

are too cumbersome to write here, but in the Appendix we give the expression for the doubly

differential (M1,M2) mass spectrum of the full t+ u (the sum of B-E) component which as we

can see in Fig. 2.6 and Fig. 2.7 provides a very good approximation above
√
s ∼ 110 GeV.
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To examine the effects of NLO contributions and pdfs we compare our parton level result for

qq → 2e2µ (q = u, d) to Monte Carlo data generated by the NLO POWEG and LO Madgraph

codes which include pdfs [42]. For this we define our phase space as 40 GeV < M1 < 120 GeV

and 10 GeV < M2 < 120 GeV for the energy range 110 GeV<
√
s < 140 GeV. We also plot

the t + u component only (defined as the sum of B-E) to examine what affects neglecting the

resonant 2e2µ process has.

In Fig. 2.7, 2.8, and 2.9 we show the kinematic distributions where it can be seen that

NLO and pdf contributions affect the normalized spectra negligibly. In addition we can see that

neglecting the resonant process also has little effect on all the kinematic variables except Φ, where

it affects the modulation and in the forward regions of cos θ1. As we will see in the Appendix,

the modulation is due almost entirely to the resonant process. These distributions simply reflect

the fact that the various kinematic distributions are not highly correlated with
√
s allowing us

to take
√
ŝ essentially as an input from the pdfs. To build a complete hadronic differential cross

section one could convolve the
√
s spectrum obtained from Madgraph or POWHEG with the

partonic differential cross section obtained analytically. This of course is what would be done

for an LHC analysis, but we do not do that here and instead simply integrate our partonic

differential cross section over
√
ŝ.

From Figs. 2.6 and 2.7 we expect the doubly differential spectrum obtained from the t + u

component only to be a good approximation which could be useful for a simplified analysis. We

give an explicit expression for this component in Eq. (A.3) of the Appendix. Though it does

not use all of the kinematic variables, it should still have strong discriminating power and can

be used with the methods proposed in [12] to form a powerful simplified study.
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Figure 2.7. Comparing the LO and NLO results for theM1 andM2 invariant
mass spectra for the ranges 40 GeV < M1 < 120 GeV and 10 GeV < M2 <
120 GeV. We take the range of the four lepton system invariant mass to be
110 <

√
s < 140 GeV.

2.5. Conclusions and Outlook

We have calculated and presented analytic fully general differential cross sections for the

golden channel signal and background in the 2e2µ final state including all intermediate vector

bosons and interference effects. We have presented various singly and doubly differential spectra

and examined how the different interference effects manifest themselves in these distributions

and in correlations between the different kinematic variables. We have also emphasized the
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Figure 2.8. Comparing the LO and NLO results for the polar angles
cos Θ, cos θ1, cos θ2 for the ranges 40 GeV < M1 < 120 GeV and 10 GeV
< M2 < 120 GeV. We take the range of the four lepton system invariant
mass to be 110 <

√
s < 140 GeV.
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Figure 2.9. Comparing the LO and NLO results for the azimuthal angles
Φ and Φ1 for the ranges 40 GeV < M1 < 120 GeV and 10 GeV < M2 <
120 GeV. We take the range of the four lepton system invariant mass to be
110 <

√
s < 140 GeV.

need to push the ‘off-shell’ invariant mass (M2) reach as low as possible as well as relaxing the

‘Z-window’ to maximize the discriminating power when testing different signal hypothesis. We

have shown that the expressions can aid in distinguishing between different signal hypotheses

and because signal and background are provided, both can be included into one likelihood, as

should be done when performing simple hypothesis tests of different signals. These expressions
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can be implemented into an MEM analysis to perform detailed studies of the spin and CP

properties of any scalar resonance which has been or may be discovered at the LHC.



47

CHAPTER 3

Directly Measuring the Tensor Structure of the Scalar Coupling

to Gauge Bosons

In this chapter we demonstrate the usefulness of the golden channel by performing a simple

hypothesis test between a subset of the scalar tensor operators considered in Sec. 2. We do

not attempt an analysis of signal extraction from a background as we performed in a study

to examine heavy Higgs bosons [5], but instead assume an already purified signal sample. We

attempt to delve into the signal events themselves and see what information can be learned

about the new particle via a direct measurement in the golden channel. We take the hypothesis

that the new particle is a parity even scalar and try to see if this channel can be used to directly

measure the tensor structure of the coupling of this particle to the four lepton final state. If we

denote the new scalar by φ, it can have the following couplings to ZZ

1

v

(
ahm

2
ZφZµZ

µ + asφZ
µνZµν + ...

)
(3.1)

where Zµ is the Z field while Zµν = ∂µZν−∂νZµ. Here v = 246 GeV is the Standard Model (SM)

Higgs vev which is chosen to normalize the operators, and the ... is for operators of dimension

higher than five. If φ is the Standard Model Higgs, then ah = i, and the other coupling is loop

induced and small.

As we are trying to determine whether this new particle is the SM Higgs, we must consider

other possibilities. If φ does not give mass to the Z, then its linear coupling to gauge bosons can

proceed via the field strength tensor, Zµν as in the operator as in Eq. (3.1). The as operator
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is generically loop induced and its coefficient is model dependent. We see this sort of operator

even in the Standard Model Higgs’ coupling to γγ and Zγ:

1

v

(
aγ φF

µνFµν + aZγ φZ
µνFµν + ...

)
(3.2)

where we continue to use φ to denote our scalar, and Fµν is the field strength tensor for the

photon. In the SM, aγ and aZγ are induced by loops with top and W giving the largest

contributions. If φ is not the Higgs, then a plausible alternative is that it decays to four leptons

via as or aZγ . Generically, as, aZγ and aγ are all present and of comparable size, and all three

operators can mediate four lepton final states. Typically experimental searches require that the

invariant mass of the one of the lepton pairs is near the Z pole, so the contribution of aγ is

small, but we will see that both as and aZγ need to be considered.

Bounds on all the operators in Eqs. (3.1) and (3.2) can be set using the absence of single

production of this resonance at LEP [43]. In order to interpret these bounds at the LHC,

however, the production cross section of this scalar must be computed, and that is a priori

unknown. If φ does couple dominantly via ah that would be evidence that it is indeed a Higgs.

On the other hand, it could still be something more exotic such as a dilation [44–46]. The crucial

point is that if we are going determine if φ gives mass to the Z boson, we must show that its

coupling to ZZ∗ is dominantly through ah. As we will show below, the kinematic distributions

of the four lepton events can discriminate ah from as and aZγ .

The question of distinguishing these operators via kinematics was considered briefly in [26].

We here extend their analysis by studying all possible kinematic variables which can distinguish

different possible decay operators. Furthermore, the analysis of [26] only considers a mass of a

scalar greater than twice the Z mass, while we here will be working in the kinematic regime where

one of the Z’s is far off-shell. In [10], they use kinematic methods to distinguish two different
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kinds of parity even scalars, but both of their possibilities are still responsible for giving mass

to the W and Z. In other words, they both have significant ah in the language of Eq. (3.1).

If the new resonance has anomalous couplings to Z and W , then the production of the

resonance through vector boson fusion (VBF) would also be modified. These effects were studied

in [43], where it was shown that angular correlations between the two tagging jets in VBF can

constrain the value of the operators in Eq. (3.1). Here, we only consider decays of the resonance,

but these two types of measurements can be complementary in fully characterizing the nature

of the new state.

3.1. Differential Spectrums

We compute tree level analytic expressions for the full differential decay width in terms

of frame invariant 4-vector dot products before choosing the frame with kinematic variables

as described in 2. We plot normalized one dimensional distributions for Φ, cos θi, and M2 in

Fig. 3.1. We take mφ = 125 GeV here and throughout. Distributions will change little with

variations of mφ within the experimental resolution. We restrict Mi to the ranges described

below in order to better approximate the experimental searches. We consider the operators ah,

as and aZγ turning on one operator at a time with the others set to zero.

In general, all three operators, ah, as, and aZγ will be non-zero. In the case of a Higgs-like

state which gives mass to the Z, as and aZγ are loop suppressed and ah will dominate. If the new

state does not contribute to electroweak symmetry breaking, then ah will often be negligible. If

as ∼ aZγ , which is typically the case if the two operators are generated by loops of electroweak

charged matter, then the effects of aZγ will dominate. This is because in the allowed region

for M2, a photon will be much closer to on-shell than a Z, and because the Z has suppressed

couplings to leptons relative to the photon. Even if as is ten times larger than aZγ , aZγ will

dominate the decay and we can consider turning on just aZγ as a reasonable approximation. On
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Figure 3.1. Normalized distributions for Φ (top), cos θi (middle), and M2

(bottom) for mφ = 125 GeV. Each plot shows curves from our three different
scenarios with ah blue (solid), as red (dashed), and aZγ green (dot-dashed).

the other hand, one could imagine a model where aZγ is very small, possibly due to tuning, and

we therefore consider turning on only as as a stand in for this possibility. From this analysis, we

see that in most of the parameter space, one operator will dominate over the other two, which

is why we consider scenarios where only one operator is turned on at a time.
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The top two panels in Fig. 3.1 show that the angular distributions, particularly that of cos θ

provide good discriminating power between a Higgs-like scenario ah, and the two non-Higgs-like

possibilities. The third plot shows that the M2 distribution is different for all three scenarios,

and the difference is even more pronounced for small values of M2. This can be seen from the

following simple analysis. For ah, the matrix element goes to a constant as M2 → 0, and a phase

space factor of M2dM2 makes the rate go to zero. For as, the matrix element goes as M2 for

small M2 because of the derivative in the operator, so dΓ falls as M3
2 . Finally, for aZγ , the matrix

element goes as 1/M2 because the photon propagator in the denominator and the derivative in

the numerator, and thus the rate goes as 1/M2. As we will see below, realistic detector cuts

such as those on lepton pT will change this low M2 behavior, but this simple analysis shows that

if the experiments could push down the M2 reach of the events, they would gain discriminatory

power.

We do not include a plot for M1 because in all scenarios, it looks similar with a large peak

at MZ that has width of ΓZ . The M1 distribution does, however, provide some discrimination

power in that the number of events well below MZ differs for our three different scenarios. For

example, in the ah scenario, 70% of the events will lie more than 2ΓZ away from MZ , while the

corresponding fraction for as (aZγ) is 64% (84%). The majority of these non-resonant events

have M1 < MZ .

If the four lepton events are dominated by aZγ , then there should also be decays to on-shell

photons. It has been pointed out that searching for the Higgs in decays to Zγ is a promising

channel [27]. While there is as yet no direct limit in this channel, [29] uses the measurement of

the Zγ cross section to place a limit on the ratio of the Zγ mode to the four lepton mode to be

about 40. Given this, we take the Zγ mode to be an unlikely possibility, but we still believe in

checking the data to see if it can be directly excluded.
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In order to compare to experiment, we also generate Monte Carlo (MC) events. We use the

Johns Hopkins MC described in [9] to simulate ah and as, and Madgraph 5 [21] for aZγ . We

generate gg → φ→ 4` events where ` = e, µ at the LHC with
√
s = 8 TeV. Gluon fusion is the

dominant mode of Higgs production at the LHC [47]. Since our variables are mostly sensitive

to decay and not production, the errors introduced by ignoring sub-dominant production modes

will be small. We require our events to contain four charged leptons (e or µ) with

• pT > 10 GeV

• |η| < 2.5

• 50 GeV < M1 < 110 GeV

• M2 > 15 GeV,

which roughly mimics the experimental selection criteria in [1, 2]. Histograms for the distinguish-

ing kinematic variables from generated events are overlaid on the analytic results in Figs. 3.2

and 3.3. Because the experimental resolution for energy and direction of leptons is so precise,

we do not apply any smearing to the events. While a truly realistic study will need to take

into account experimental reality, we here see how far the experiments could get with just the

geometric cuts above.

In Fig. 3.2, we plot the cos θ1 and cos θ2 distributions for 1000 generated Monte Carlo events

which pass the above cuts. We compare it to the theoretical distribution which is the same for

the two angles. We see that the cuts have limited effect on cos θ1, but the rate for cos θ2 ∼ ±1

is suppressed. This is because in that configuration, one of the leptons is nearly aligned with

the boost direction needed to go to the lab frame from the Z2 rest frame, and thus performing

that boost will reduce its energy and make it less likely to pass the pT cut. This effect is small

for cos θ1 because the lepton energies in the Z1 rest frame are much larger.

In Fig. 3.3, comparing the blue (solid) curve to the light-blue (dot-dashed) histogram, we

see that the experimental cuts reduce the event rate for small M2. Even after these cuts,
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Figure 3.3. Normalized M2 distributions. The blue (solid) curve is the
theory prediction in the ah scenario, while the light blue (dot-dashed) his-
togram is 1000 Monte Carlo events also in the ah scenario. The red (dashed)
histogram is 1000 events in the as scenario.

however, the histograms for ah and as still differ, so the experimental cuts do not wash out the

discriminating power.
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3.2. Distinguishing Operators

In order to estimate the ability of the LHC to discriminate a Higgs-like scenario dominated

by ah from other scenarios, we employ a likelihood analysis of the generated events. We consider

only signal events because requiring the invariant mass of the four lepton system to be near the

mass of the new boson can make the signal to background ratio significantly larger than one.

Furthermore, reweighing techniques such as the one laid out in [48] can be used to further purify

the event selection.

We use a standard unbinned likelihood analysis which is described in detail in [9]. We can use

the computed normalized differential cross section as a probability distribution P (Φ, θi,Mi|ai)

for each operator ah, as, and aZγ . The normalization is computed with the Mi cuts described

above because they are independent of Lorentz frame. Taking the pT and η acceptance into

account in P would improve the statistical power of the test, but because those cuts are frame-

dependent, we leave that to further work.

Given a sample of N events, we can then construct a likelihood L(ai) =
∏N
j=1 Pj(ai). With

this likelihood we can then compare two different scenarios, a1 and a2 by constructing a hypoth-

esis test with test statistic defined by [49]

Λ = 2 log[L(a1)/L(a2)]. (3.3)

Since we are taking the resonance mass as input and using the normalized differential cross

sections to construct our likelihood functions, there are no free parameters (nuisance parameters)

in this ratio, making this a simple hypothesis test.

To estimate the expected significance of discriminating between two different hypotheses

corresponding to two different operators, we follow a similar analysis to that found in [9]. To

begin, we take one hypothesis as true, say a1 and generate a fixed number N of a1 events. We
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Figure 3.4. Normalized distribution of our test statistic Λ when ah is true
on the right (blue), and when as is true on the left (pink). Each histogram
is the result of 5000 pseudo-experiments with 50 events each. The vertical
(green) line is Λ̂ defined in Eq. (3.4) such that the area to the right of Λ̂

under the as histogram is equal to the area to the left of Λ̂ under the ah
histogram. We also draw a Gaussian over each histogram with the same
median and standard deviation.

then construct Λ as above for a large number of pseudo-experiments each containing N events in

order to obtain a distribution for Λ. We then repeat this exercise taking a2 to be true and again

obtain a distribution for Λ. These two distributions are shown in Fig. 3.4 comparing ah and as.

This figure shows 5000 pseudo-experiments of 50 events each, which shows a clear separation

between the two scenarios.

With the two distributions for Λ in hand we can compute an approximate significance by the

following procedure. If we denote the distribution with negative mean as f and the distribution

with positive mean as g, we find a value Λ̂ such that

∫ ∞
Λ̂

fdx =

∫ Λ̂

−∞
gdx. (3.4)

Schematically, this value of Λ̂ corresponds to a value such that if the experiment observed that

value for the test statistic, it would have no discriminatory power between the two scenarios.
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We then interpret the probability given by either side of Eq. (3.4) as a one sided Gaussian

probability, which can then be interpreted in terms of number of σ. This procedure is shown

schematically in Fig. 3.4 with the areas of the two shaded regions being equal and corresponding

to the probability of excluding the correct hypothesis. For a simple hypothesis test, this Gaussian

approximation is often sufficient [49], and we see from Fig. 3.4 that the Λ distributions are well

approximated by Gaussians.

This procedure is repeated many times for a range of numbers of events N to obtain a

significance as a function of N for each hypothesis. We show this for the case where a1 = ah

and a2 = as or a2 = aZγ in Fig. 3.5. We see that with O(50) events, we can distinguish

renormalizable from nonrenormalizable coupling to ZZ at 95% confidence, and with O(100)

events we can get a 99% exclusion. The operator aZγ can be distinguished from ah at 95%

confidence with as few as 20 events. The third possibility, which we do not show, is even easier;

as and aZγ can be distinguished from one another at 95% with just 10 events.

3.3. Conclusions and Outlook

Testing the properties of the newly discovered resonance near 125 GeV is of utmost im-

portance. While the rate and branching ratio data are consistent with the new particle being

the Standard Model Higgs, direct tests of its properties are still essential. In this chapter we

have examined the discriminating power of events where the new particle decays to four leptons.

These events can be used to measure the Lorentz transformation properties of this particle, but

even if it is confirmed to be a parity even scalar, it still need not be the Higgs; it could couple to

the gauge bosons via higher dimensional operators rather than via the renormalizable operator

in the Standard Model.

We have analyzed how well kinematic distributions in four lepton events can distinguish

between different tensor structures of the coupling to gauge bosons. In particular, we looked a
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Figure 3.5. Expected significance as a function of number of events in the
case of ah vs as on top, and ah vs aZγ on bottom. We use a different
horizontal scale for the top and bottom plots because far fewer events are
needed to discriminate ah from aZγ than from as. We also fit with a function

proportional to
√
N , which is the expected scaling. We mark the σ value

of 95% and 99% confidence level exclusion.

coupling directly to ZµZ
µ, as well as couplings to a pair of field strength tensors of the Z, and

a coupling to the field strength of the Z and of the photon. All three scenarios will produce

one lepton pair near the Z pole, while the other pair will have much lower invariant mass.

We find that with O(50) signal events, a Higgs-like state can be discriminated from ZZ field

strength tensor couplings with 95% confidence, while only 20 events are needed to make the
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same determination for field strength coupling to Zγ. This shows that the LHC has excellent

prospects to constrain the tensor structure of the new state’s coupling to gauge bosons.
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CHAPTER 4

Dark Matter and Vector-like Leptons From Gauged Lepton

Number

4.1. Introduction

With the recent discovery of a new resonance with standard model (SM) Higgs like proper-

ties [1, 2] the final piece of the SM appears to be in place. It is well known, however, that there

are questions for which the SM has no answer and beyond the standard (BSM) physics is needed.

Chief among these questions is the nature of dark matter (DM) and the mechanism which makes

it stable. It is also well known that the renormalizable SM Lagrangian possesses an (anomalous)

accidental global symmetry associated with the conservation of overall lepton number. If one

allows for higher dimensional operators, lepton violating interactions can occur at dimension

five, but to date no such processes (with the possible ambiguous exception of neutrino masses)

have been observed experimentally [50]. This is perhaps an indication that lepton number is

a more fundamental symmetry which prevents the generation of SM lepton number violating

operators. In this work, we connect the apparent lack of lepton number violation to the stability

of thermal relic dark matter, by deriving both from a U(1)L gauge symmetry associated with

lepton number.

Gauging lepton number is attractive for both phenomenological as well as theoretical reasons

and the possibility of lepton number (and also baryon number) as a local gauge symmetry

was first explored in [51, 52]. However, the first complete and consistent model of gauged

lepton number (and baryon number) was not explored until more recently in [53] with numerous
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variations following [54–59]. Here we explore a particular realization where the DM arises as

part of the exotic lepton sector required by gauging lepton number and the attendant need to

cancel anomalies.

The DM candidate is a Dirac electroweak (mostly) singlet neutrino stabilized by an accidental

global symmetry of the renormalizable Lagrangian which is preserved even after lepton number

is spontaneously broken. As we will see, as a byproduct of the lepton breaking mechanism and

the requirement of a viable DM candidate, one also obtains a set of vector-like leptons which

can have interesting phenomenology at the LHC through either direct production or through

modifications of Higgs decays to SM particles.

We extend the SM gauge group to SU(3)c ⊗ SU(2)W ⊗ U(1)Y ⊗ U(1)L where the SM

leptons are charged under U(1)L. The anomalous U(1)L requires us to add a new set of leptons

with the appropriate quantum numbers to cancel anomalies. Typically, U(1)L is spontaneously

broken by the vacuum expectation value of a SM singlet scalar in such a way that Majorana

masses can be generated for the right-handed neutrinos, (whose presence is required by anomaly

cancellation [53]). Such constructions allow for a simple realization of the well known ‘see-

saw’ mechanism of neutrino mass generation, but do not contain viable dark matter candidates

without additional assumptions or particle content.

Here, motived by the desire for a thermal DM candidate, we choose to break lepton number

with a SM singlet scalar carrying L = 3. This leads to a remnant global U(1) symmetry

preventing decay of the lightest new lepton which stabilizes the DM candidate. This global

symmetry is a consequence of the gauge symmetry and particle content of the model and does

not need to be additionally imposed. It also ensures that the model is safe from dangerous flavor

violating processes which are highly constrained by experiment. An automatic consequence of

this construction is that one also obtains a new generation of vector-like (with respect to the

SM) leptons after the spontaneous breaking of lepton number. This type of lepton spectrum has
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garnered recent interest in the context of modifications to the Higgs decay into diphotons [60–66]

and was also recently shown to be useful for baryogenesis [67, 68].

The organization of this papers is as follows. In Sec. 4.2 we briefly review the gauging of

lepton number and cancellation of anomalies. We also discuss the details of the lepton breaking

mechanism as well as the particle content and Lagrangian. In Sec. 4.3 we discuss the DM

candidate and stability and obtain the relic abundance for a range of DM masses. We also

examine the direct and indirect detection prospects. In Sec. 4.4 we discuss constraints as well as

LHC phenomenology and examine the effect of the vector-like leptons on the Higgs to diphoton

rate. We present our conclusions and an overview of possible future work in Sec. 4.5.

4.2. The Model

The SM gauge group is extended to SU(3)c⊗SU(2)W ⊗U(1)Y ⊗U(1)L where L represents

the lepton charge. We restrict ourselves to the minimal particle content consisting of a set of

anomaly-canceling exotic leptons, plus the new gauge field and a SM singlet scalar which breaks

lepton number spontaneously. In principle, this theory is UV-complete up to large energies,

and we restrict ourselves to considering renormalizable interactions. We discuss each of these

ingredients, including the interactions, below.

4.2.1. Anomaly Cancellation

The anomalies introduced when gauging lepton number and various ways to cancel them with the

addition of new fermions are discussed in detail in [53–55]. All options include three generations

of right-handed singlet neutrinos (νRi, considered as part of the SM) with quantum numbers

νRi ≡ (1, 0, 1) under (SU(2)W , U(1)Y , U(1)L) and i = e, µ, τ . We define all SM leptons to have

L = 1. In addition to νRi, one must add new electroweak doublet and singlet leptons to cancel

the gauge anomalies. There are several options; here we focus on a simple construction making
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use of two exotic generations of chiral fermions which together form a vector-like set under the

SM gauge group [55], ensuring that anomaly cancellation in the SM gauge factors is preserved.

The first set of new fermions is a sequential fourth generation of leptons carrying lepton number

L = L′,

`′L ≡ (ν ′L e
′
L) ≡ (2,−1/2, L′),

e′R ≡ (1,−1, L′), ν ′R ≡ (1, 0, L′). (4.1)

The second is a mirror set of opposite chirality with lepton number L = L′′ = L′ + 3,

`′′R ≡ (ν ′′R e′′R) ≡ (2,−1/2, L′′),

e′′L ≡ (1,−1, L′′), ν ′′L ≡ (1, 0, L′′), (4.2)

where the condition,

L′ − L′′ = −3 (4.3)

is required by anomaly cancellation. The addition of two sets of chiral fermions carrying lepton

number which together form a vector-like set under the SM also avoids the need to add new

quarks to cancel anomalies, although scenarios with exotic quarks are also interesting and have

been explored in the context of gauged baryon number [53–55]. The particle content in Eqs.(4.1)

and (4.2) is similar to that obtained in [57] where baryon number is also gauged and one obtains

a vector-like set of ‘lepto-quarks’ as well as a potential DM candidate. Here we focus on only

gauging lepton number which requires a simpler scalar sector and fewer new particles.
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4.2.2. Gauge and Higgs Sector

The gauging of lepton number will introduce a new spin-1 vector boson which we label ZL.

In addition to the usual Abelian vector field kinetic terms, the U(1)L gauge field will have

interactions,

L ⊃ (DµΦ)†(DµΦ) +
ε

2
ZµνL Bµν

+ l
′
LDµγ

µl′L + l
′′
RDµγ

µl′′R + liDµγ
µli , (4.4)

where Dµ = ∂µ + ig′LZµL with L the lepton number assignment for a particular field. Φ ≡

(1, 0, LΦ) is the SM singlet scalar carrying lepton number whose vev (vφ) breaks the U(1)L

spontaneously. The index i = e, µ, τ runs over all SM leptons while l = `, e, ν where ` is an

SU(2) doublet and e, ν are singlets. Note there is no δM2ZLµZ
µ term since Φ is not charged

under the SM and the Higgs does not carry L.

The parameter ε encapsulates the degree of kinetic mixing between U(1)L and U(1)Y . One

can in principle impose ε = 0 at tree level through symmetries, but in general it is a free

parameter of the theory and is additively renormalized by loops of leptons. While any value of

ε at the weak scale can be engineered, the loop-induced piece is typically of order 10−3, small

enough to be consistent with experimental constraints without undue fine tuning.

After lepton and electroweak symmetry breaking ε also leads to Z−ZL mixing parameterized

by [69],

tan 2ξ =
2M2

ZsW ε
√

1− ε2
M2
ZL
−M2

Z(1− ε2) +M2
Zs

2
W ε

2
, (4.5)

where ξ is the ZL − Z mixing angle and MZ ,MZL are the masses. In the absence of mixing,

MZL = LΦg
′vφ. As we will see, since this mixing is constrained to be small by direct searches for

dark matter (with weaker constraints from precision measurements [69–71]) we take MZ ,MZL

as the physical masses as well.
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In the Higgs sector the existence of Φ allows for an expanded scalar potential,

V (H,Φ) = −µ2
HH

†H + λH |H†H|2

−µ2
ΦΦ†Φ + λΦ|Φ†Φ|2 + λhpΦ

†ΦH†H, (4.6)

where H ≡ (2,−1/2, 0) is the SM Higgs doublet. Once lepton number is broken, the real

component of Φ obtains a vacuum expectation value 〈Φ〉 = vφ/
√

2, while the Higgs boson H

obtains its own vev, 〈H〉 = (0, vh/
√

2) to break the electroweak symmetry. The scale vφ will be

the only new dimensional scale introduced, with all of the other parameters being dimensionless

couplings. We will see below in Sec. 4.2.4 that LΦ = 3 is preferred.

The presence of the ‘Higgs portal’ coupling λhp will generically lead to mixing between the

real singlet components of Φ and H parameterized by the mixing angle,

tan 2θ =
λhpvhvφ

λΦv2
φ − λHv2

h

. (4.7)

This mixing leads to the mass eigenstates,

h = cθho − sθφo ,

φ = sθho + cθφo ,
(4.8)

where φo and ho are the gauge eigenstates and φ, h are the mass eigenstates with masses,

m2
h,φ =

(
λHv

2
h + λΦv

2
φ

)
∓
√(

λΦv2
φ − λHv2

h

)2
+ λ2

hpv
2
hv

2
φ ,

(4.9)

where we have assumed mφ > mh and defined cθ = cos θ, sθ = sin θ, etc. The coupling λhp will

also lead to a tree level shift in the Higgs quartic coupling [72], which provides a mechanism

for stabilizing the vacuum in the presence of the exotic charged leptons with large Yukawa
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couplings to the SM Higgs. It was shown to be a particularly efficient stabilization mechanism

when mφ � mh, even for small mixing angles [62].

4.2.3. Global Symmetries and Breaking L

The two new sets of leptons along with the SM lepton sector comprise three separate sectors

labeled by their lepton number L = 1, L′, L′′ for which global U(1) symmetries can be associ-

ated. These global symmetries are each separately conserved by the SM and U(1)L interactions.

Yukawa interactions (assuming LΦ permits them) will break these symmetries in realistic mod-

els, as discussed below. A combination of precision electroweak, collider, and direct detection

constraints prohibit a stable lepton which carries electroweak charge. Thus, couplings to the

Higgs must not be too large and the DM can not receive its mass solely from the SM Higgs,

leading to the need to generate an additional contribution to the DM mass which does not come

from electroweak symmetry breaking.

From these considerations one concludes that the SM singlets ν ′R and ν ′′L or some combination

must compose the majority of the DM. Majorana masses can be generated by choosing the lepton

breaking scalar to carry LΦ = 2L′ or LΦ = 2L′′. However, this choice still leaves either L′ or L′′

unbroken meaning that the lightest lepton of the corresponding sector will be stable and only

receive its mass from its couplings to the Higgs, which as discussed is ruled out by experiment.

It is clear that in order to avoid a heavy stable lepton with unacceptably large couplings to the

Z or Higgs boson one must choose LΦ such that it generates an interaction between the L′ and

L′′ sectors. The anomaly cancellation condition of Eq.(4.3) ensures that the only possibility is

LΦ = 3.
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4.2.4. Yukawa Sector

Given LΦ = 3 , the Lagrangian for the Yukawa sector of the new leptons can be written,

L ⊃ −c`Φ`
′′
R`
′
L − ceΦe′′Le′R − cνΦν ′′Lν

′
R − y′eH`

′
Le
′
R

−y′′eH`
′′
Re
′′
L − y′νH̃`

′
Lν
′
R − y′′νH̃`

′′
Rν
′′
L + h.c.. (4.10)

In general these couplings are complex, containing phases which can lead to CP violation, but

for simplicity we assume all couplings in Eq.(4.10) are real (but see [73, 74] for recent studies

of CP violating effects on the diphoton rate coming from vector-like leptons). It is also clear

from Eq.(4.10) that once Φ obtains a vev the couplings c`, ce, and cν will lead to vector-like

(with respect to the SM) masses for the exotic leptons. The new leptons will also receive mass

contributions from electroweak symmetry breaking through the y′ν,e, y
′′
ν,e couplings. Note also

that unless L′, L′′ = 0 , explicit Majorana masses for ν ′R and ν ′′L are not allowed nor will they

be generated after lepton number breaking unless L′ = −L′′ = −3/2 (This case was considered

explicitly in the context of gauged lepton and baryon number with vector-like ‘lepto-quarks’ [57]).

We avoid these choices in what follows.

In principle there may still be couplings between the exotic and SM leptons. Since we have

taken SM lepton number to be L = 1, this implies that L′, L′′ 6= 1 in order to avoid mixing with

SM leptons which can lead to dangerous flavor changing neutral currents as well as the decay of

the DM. If we choose L′ = −4, which fixes L′′ = −1 then, in addition to those in Eq.(4.10), one

can also generate interactions between the SM and the new lepton sector given by,

L ⊃ yΦνc′RνRi + h.c.. (4.11)

Once Φ obtains a vev, this will lead to mixing between the SM right-handed neutrinos, νRi and

the exotic right handed neutrino, ν ′R. This also implies that the exotic lepton sector can decay
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to the SM, thus eliminating this scenario as an explanation for dark matter. To summarize,

in order to avoid mixing with the SM and ensure a stable DM candidate, we take (L′, L′′) 6=

(1, 4), (−4,−1), (−2, 1). Furthermore, to avoid Majorana mass terms we also assume (L′, L′′) 6=

(0, 3), (−3
2 ,

3
2), (−3, 0). Thus our complete Yukawa sector Lagrangian is given by Eq. (4.10) and

L′ can otherwise be any real number satisfying L′ = −3 + L′′.

In the limit that the Yukawa couplings ci → 0, one recovers the global symmetries which

separately preserve L′, L′′ and LSM . As a result, ci � 1 are technically natural, implying that

vector-like masses for the new leptons much smaller than vφ are natural. We also note that

small values of the y′ν,e, y
′′
ν,e, and ySMνi Higgs Yukawa couplings are technically natural.

It is worth noting that Eq. (4.10) is very similar to the Yukawa sectors proposed in a generic

framework in [60, 62], but here arises from U(1)L gauge invariance and anomaly cancellation.

Only one new scale (vφ) is introduced, with the masses of the new fermions following from di-

mensionless couplings. Furthermore, the global symmetries needed to protect against dangerous

mixing with SM leptons and insuring the existence of a stable DM particle are guaranteed by

U(1)L gauge invariance as opposed to being imposed by hand.

4.2.5. Experimental Constraints

Low energy experiments place a limit on the parameters which describe the ZL sector. Since the

SM Higgs does not carry lepton number and Φ is a SM singlet, there is no mass-mixing between

ZL and the SM electroweak interaction at tree level. Furthermore since ZL does not couple to

quarks, direct search limits from the LHC are rather weak, and the strongest limits are obtained

from constraints on four-lepton operators derived from LEP II data [75]; these require

vφ ≥ 1.7 TeV, (4.12)

roughly independently of the value of g′.
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Figure 4.1. Contours of Higgs mixing angle θ(red-dotted), Higgs quartic
coupling λH(orange-solid), and heavy scalar mass mφ in GeV (black-solid)
as defined in Eqs.(4.7) Eq.(4.9) as a function of scalar couplings (λhp, λΦ)
in Eq.(4.6).

This lower bound and the experimentally measured value of mh ' 125 GeV constrains

the quartic couplings in the scalar potential of Eq.(4.6) through Eq.(4.7) and (4.9). Fixing

vφ = 1.7 TeV and mh = 125 GeV we can then examine the scalar mixing angle θ, the Higgs

quartic λH , and the heavy scalar mass eigenstate mφ as functions of the scalar couplings λhp

and λΦ. In Fig.4.1 we show contours of λH(λΦ, λhp) (solid-orange), θ(λΦ, λhp) (dotted-red), and

mφ(λΦ, λhp) (solid-black) in the λhp − λΦ plane. As can be seen, values of θ . 0.1− 0.2 can be

obtained for quartic couplings of O(1) and heavy scalar masses ∼ 2.5 TeV. To obtain mixings

as large as θ ∼ 0.4 requires λH ∼ 3 and small λΦ . 0.5 with mφ ∼ 1.5 TeV. In general we find

mφ & 1 TeV for vφ = 1.7 TeV, possibly within reach of the LHC, but more likely too heavy to

be produced directly.
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plane (see Eq.(4.5)).

Precision measurements on the Z-pole also constrain the degree of ZL-Z mass mixing. Since

this occurs at loop level (through loops of the SM and exotic leptons as well as scalars), it will

typically be small enough (. 10−3) for any vφ consistent with the LEP II bound. There are also

constraints (via sin ξ in Eq.(4.5)) on the kinetic mixing parameter from direct detection [76]),

which are comparable to the expected size induced by loops of leptons. Using Eq.(4.5) we

examine the ε−MZL parameter space for typically allowed values of sin ξ . 10−4 over a range

of ZL masses. In Fig.4.2 we present contours of sin ξ× 104 in the ε−MZL plane for small values

of the kinetic mixing parameter ε as would be favored in theories where ε = 0 at tree level as

discussed in Sec.4.2.2. We can see that for MZL ∼ 1 TeV one can obtain a Z −ZL mixing angle

of sin ξ ∼ 0.1× 10−4 with a kinetic mixing of ε ∼ 0.002.
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4.2.6. Possible Extensions

There are a number of possibilities for how one could extend this model or embed it into a

more complete theory. For instance,with the need to break lepton number spontaneously, the

question as to how one obtains vφ naturally also arises. One could imagine embedding this

model in a supersymmetric version as was done in [55, 56, 77] for other gauged lepton number

constructions. Another possibility is to have the scalar sector of this model arise as part of a

set of goldstone bosons resulting from a strongly broken global symmetry as for example [78].

Another possibility for generating natural values for not only vφ, but also the electroweak

scale (vh) is through dimensional transmutation where vφ is generated radiatively [79]. This

scale is then inherited by the SM through the ‘Higgs Portal’ as done recently in [80] for a hidden

U(1) gauge extension of the SM, but we leave it to a future study to explore this possibility. For

the remainder of this study we simply set vφ to its lower bound of vφ = 1.7 TeV.

One can also extend the theory to obtain ε = 0 at tree level in Eq.(4.4) by positing that the

U(1)L gauge symmetry arises out of a larger non-Abelian gauge symmetry which forbids ε 6= 0

[81] and is broken at some high scale Λ down to U(1)L. Below the scale Λ, but above the lepton

and electroweak breaking scales, loop corrections due to hyper-charged leptons vanish provided

the leptons satisfy an orthogonality condition [81],

Tr (LY ) = 0. (4.13)

Combined with the anomaly cancellation constraint in Eq.(4.3), this would determine the exotic

lepton numbers to be L′ = −3 and L′′ = 0. Below vφ and vh there will be loop induced (from

both leptons and scalars) corrections which generate a kinetic mixing, but typically ε� 1.

Note, that although we have only gauged lepton number, this is enough to prevent the di-

mension six operators of the form L ∼ 1
Λ2 qqq` (for appropriate lepton number assignment to
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the lepton breaking scalar) which might lead to proton decay. However, while baryon number

violating operators at dimension six are forbidden, higher order operators are still allowed since

baryon number is not protected by a gauge symmetry. The leading operator that might mediate

proton decay, 1
Λ8 (qqq`)(`H)2Φ†, first occurs at dimension twelve while ∆B = 2 operators with

∆L = 0 are allowed at dimension 9 [82], as in the SM. For scales Λ & O(100) TeV the model

considered here should be reasonably safe from the effects of these potentially dangerous opera-

tors. Of course one can extend this model to include gauged baryon number as well to prevent

these operators [57].

Finally is is worth mentioning that this model possesses many ingredients which may be help-

ful for explaining the baryon asymmetry of the universe. The current construction automatically

contains new massive states as well as new interactions containing CP -violating phases. It would

be interesting to explore whether or not it is capable of explaining this asymmetry as well as

dark matter. Since the WIMP in this theory is a Dirac fermion, there is potential to realize a

theory with asymmetric dark matter. We leave it to future studies to explore these possibilities.

4.3. Dark Matter

Here we examine the DM matter candidate in this model. We first discuss the stability which

results from an accidental global symmetry of the Lagrangian and identify the DM as a heavy

mostly singlet neutrino. This global symmetry is a consequence of the particle content and

underlying lepton gauge symmetry, much in the same way that lepton number is an accidental

global symmetry in the SM. We then discuss the various annihilation channels and calculate the

relic abundance of the DM candidate to establish the allowed masses. We also discuss various

other phenomenological features.
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4.3.1. DM Candidate and Stability

We begin by examining the neutrino sector once Φ and H obtain expectation values which gives,

L ⊃ −
c`vφ√

2
(1 +

φo
vφ

)ν ′′Rν
′
L −

cνvφ√
2

(1 +
φo
vφ

)ν ′′Lν
′
R (4.14)

−y
′′
νvh√

2
(1 +

ho
vh

)ν ′′Rν
′′
L −

y′νvh√
2

(1 +
ho
vh

)ν ′Lν
′
R + h.c.,

leading to the mass matrix,

Mν =
1√
2

 c`vφ y′νvh

y′′νvh cνvφ

 , (4.15)

which can be diagonalized using the singular value decomposition MνD = U †LMνUR, where

MνD is a diagonal mass matrix with positive mass eigenvalues mνX and mν4 .

While the Yukawa couplings to Φ and H break the global U(1) symmetries associated with

L′ and L′′ explicitly, there is a residual Z2 symmetry under which all heavy leptons are odd and

all SM leptons are even, which is preserved after spontaneous breaking of the lepton number and

electroweak gauge symmetries. Assuming that the new charged leptons are heavier, this residual

global symmetry guarantees the stability of the lighter of the two neutrino mass eigenstates,

opening up the possibility for dark matter.

In the limit where y′νvh, y
′′
νvh � c`,νvφ, the mass eigenvalues are approximately given by

mνX ≈
1√
2
cνvφ ,

mν4 ≈
1√
2
c`vφ . (4.16)

In this limit, the eigenstate ν4 is mostly composed of the electroweak doublet neutrinos ν ′′R and

ν ′L, while νX is a combination of the singlets ν ′′L and ν ′R and with tiny couplings to the SM W±

and Z bosons. Since the doublet neutrino ν4 couples directly to the Z boson, direct detection
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experiments render it unacceptable as a DM candidate. Therefore we require cν < c`, such that

νX is the DM candidate. Of course ν4 must be able to decay which means that at least one

of the Yukawa couplings y′ν , y
′′
ν should be nonzero to allow ν4 to decay into a Higgs boson and

νX . Nonetheless, this requirement allows the yν ’s to be small enough so as to be completely

irrelevant in the discussion below.

4.3.2. Annihilation Channels

In [60], annihilation through the interactions generated by y′ν , y
′′
ν was shown to give the correct

relic abundance for DM with dominantly Majorana masses . 100 GeV. Here, because direct de-

tection constraints require y′ν , y
′′
ν to be tiny, one would have to either rely on co-annihilation with

one of the charged leptons or annihilation through a nearly on-shell Higgs. We instead will as-

sume in the following that these couplings are too tiny to affect the DM phenomenology directly,

although they do play a role in direct and indirect searches as well as LHC phenomenology, to

be described below.

Compared to [60], there are additional annihilation channels for νX into SM leptons. In

particular, since νX is a Dirac fermion, annihilation through a vector boson is s-wave and

unsuppressed, in contrast to the case of Majorana DM. Indeed, the left- and right-handed

components of νX carry lepton number L′′ and L′, respectively, and L′ − L′′ = −3 implies a

non-vanishing coupling of νX to ZL, allowing νXνX to annihilate into SM leptons through s-

channel ZL exchange, shown in the top diagram of Fig. 4.3. There are additional annihilation

channels which arise through mixing in the neutrino as well as in the Higgs sectors. We discuss

the various annihilation modes in more detail below, assuming that νX is mostly singlet with at

most a small doublet component, i.e. y′νvh, y
′′
νvh � cνvφ.

If νX acquires a small doublet component through nonzero y′ν , y
′′
ν couplings, annihilation into

SM particles through Z or h exchange becomes possible, but again we will assume that these
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Figure 4.3. Diagrams leading to s-channel νXνX annihilation into SM states
through exchange of ZL, h, or φ.

couplings are sufficiently small such that these annihilation channels can be neglected. This is

also required since otherwise a large direct detection cross section through Z boson exchange

would be induced. At the same time this suppresses annihilation into W+W− through a heavy

charged lepton exchanged in the t-channel.

The dark matter also couples to the singlet scalar φo with a strength cν ≈
√

2mνX/vφ.

When the Higgs mixing angle θ is nonzero this will allow annihilation into SM particles through

s-channel exchange of h and φ, shown in the bottom diagram of Fig. 4.3. While not generally

negligible, the contribution of these annihilation channels turns out to be suppressed compared

to the ZL channel in the regime of interest where vφ ∼ 1.7 TeV and DM mνX ∼ vh, leading to

somewhat small values for cν . Furthermore the ZL channel leads to unsuppressed annihilation

into all SM leptons, while most of the scalar channels are suppressed by the small Yukawa

couplings of the SM quarks and leptons. We thus expect annihilation through ZL to be the

dominant contribution to the relic abundance in this regime. Note also that in this regime we

have mνX �MZL which as we will see leads to a relic abundance which is largely independent

of the lepton gauge coupling g′ (see Eq.(4.22)).
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4.3.3. Relic Abundance

Motivated by the requirement for small y′ν , y
′′
ν , we first consider the dominant annihilation

through the ZL into SM lepton pairs, and then demonstrate that scalar exchange is unlikely

to change the over-all picture. The relevant interactions come from Eq.(4.4) which before lepton

number and electroweak symmetry breaking can be written as,

L ⊃ g′ZLµ
(
L′′ν ′′Rγ

µν ′′R + L′ν ′Lγ
µν ′L + lγµl

)
, (4.17)

where l runs over SM leptons all of which have L = 1 , which implies that the left and right

handed couplings of the SM leptons to ZL are equal. This is in contrast to the case for the exotic

leptons since L′ 6= L′′. After lepton number breaking and rotating to the mass basis Eq.(4.17)

becomes

L ⊃ g′ZLµ
(
νXγ

µ(L′′PR + L′PL)νX + lγµl
)
, (4.18)

where PR and PL are the right and left projection operators respectively and we have neglected

any mixing between νX and ν4 generated by y′ν , y
′′
ν . Using Eq. (4.18) a straight forward calcu-

lation of the diagram in Fig. 4.3 gives the annihilation cross section,

σ =
g′4((L′2 + L′′2)(s−m2

νX
) + 6L′L′′m2

νX
)

8π(1− 4m2
νX
/s)1/2((M2

ZL
− s)2 +M2

ZL
Γ2
ZL

)
, (4.19)

where an overall factor of 6 is implicit for the three generations of charged leptons and neutrinos

in the SM. As is well known, the annihilation cross section 〈σv〉 is well approximated by a

non-relativistic expansion, s = 4m2
νX

+m2
νX
v2, and expanding the annihilation cross section in

powers of v to give 〈σv〉 = a+ b〈v2〉+O(〈v4〉) [83]. Expanding Eq. (4.19) we obtain

a =
3g′4R4(L′ + L′′)2

4πm2
νX

(1− 4R2)2
(4.20)
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for the velocity independent coefficient. Note, this is in contrast to the case of Majorana dark

matter annihilating through a gauge boson, in which case a = 0 up to corrections that are

suppressed by the final state fermion masses. For the 〈v2〉 coefficient we have

b =
g′4R4

(
(L′2 + L′′2)(11 + 4R2) + L′L′′(6 + 72R2)

)
32πm2

νX
(1− 4R2)3

.

(4.21)

Here we have defined R = mνX/MZL and neglected terms of order ΓZL/MZL . In general the

contribution from a will dominate since the contribution from b is suppressed by the relatively

small value of v2 at freeze-out. It is useful to consider the limit of heavy ZL mass compared to

the DM mass, or R� 1. Keeping only the leading term after expanding in powers of R we have

a ≈ 3g′4(L′ + L′′)2R4

4πm2
νX

+O(R6) (4.22)

Since MZL = 3g′vφ, the dependence on the gauge coupling g′ cancels in the leading term, as

is usual for the contact interaction that describes vector exchange at low energies. For a fixed

choice of the quantum numbers L′ and L′′, the annihilation rate is therefore largely determined

by the ratio m2
νX
/v4
φ.

From these results a good approximation for the relic density can be obtained e.g. using the

procedure presented in [83]. We have opted instead to implement the model into the numerical

code MICROMEGAS [85]. Not only does this facilitate the exploration of regions of parameter

space where the O(v2) expansion breaks down, but it also simplifies the computation of direct

and indirect detection signals. The approximate calculation of the relic density following [83]

was used as validation of the MICROMEGAS implementation of the model. The resulting relic

density (including all sub-leading effects) is shown as a function of mνX and vφ, for a few choices

of L′, in Figure 4.4. The LEP II constraints on vφ require dark matter masses greater than about
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Figure 4.4. Relic density as a function of DM mass and vev vφ, in the
absence of mixing and taking MDM = mνX . The green bands indicate
regions in agreement with the measured value of Ωh2 = 0.120 ± 0.003 [84]
for different choices of L′, as indicated in the figure.

200 GeV, and (depending on L′), a thermal relic density enforces a tight correlation between vφ

and mνX .

In the limit y′ν , y
′′
ν ≈ 0, DM couples to h and φ through cν and the Higgs mixing,

L ⊃ cν√
2

(cθφ− sθh)νXνX , (4.23)

where we have used Eq. (4.8). These couplings allow the DM to annihilate through the bottom

diagram shown in Fig. 4.3. Since dark matter masses of order the weak scale require a relatively

small cν , annihilation through Higgs exchange only has a small effect on the relic density. On

the other hand it is crucial for direct detection which will be discussed in the next section.
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Figure 4.5. Diagrams leading to scattering with nucleons mediated by ex-
change of a Higgs or Z boson.

4.3.4. Direct and Indirect Detection

In the limit y′ν , y
′′
ν → 0 and negligible mixing in the Higgs sector, the dark matter couples to

SM leptons through ZL, but has no tree level interactions with quarks. This is a challenging

situation for dark matter direct detection experiments, because of the wave function suppression

to scatter off of atomic electrons or loop suppression of the induced dark matter dipole moment

[86]. Consequently, even a small amount of Z−ZL or H−Φ mixing can dominate the rate, which

effectively disconnects the expectations at direct detection experiments from the relic density.

Higgs exchange leads to spin-independent scattering with nuclei. We compute the rate as a

function of the DM mass and Higgs mixing angle sin θ using MICROMEGAS and present the

results in Figure 4.6 for DM masses 100−400 GeV. For moderate Higgs mixing, The DM-nucleon

cross section lies about one order of magnitude below the current best limit from the XENON-

100 experiment, but is well in reach of second generation DM direct detection experiments such

as LZ [87].
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Figure 4.6. DM-nucleon cross section in pb, as a function of the Higgs
mixing angle sin θ and of the DM mass, for vφ = 1.7 TeV and MDM =
mνX . The solid red line indicates the current limit from the Xenon-100
experiment [76], while the dashed red line indicates the projected reach of
the LZ experiment [87]. The green bands indicate regions with correct relic
density for different values of L′.

Z-boson exchange induces a large DM-neutron cross section due to the sizable coupling of

the Z to light quarks. We parameterize the coupling of the Z-boson to the DM as,

L ⊃ ε′g′ZµνXγµ
(
L′′PR + L′PL

)
νX , (4.24)

where ε′ is either induced by Z − Z ′ mixing or by nonzero neutrino Yukawa couplings y′ν , y
′′
ν .

The upper bound on ε′ from direct detection for L′ = 2 is shown in Fig. 4.7, for DM masses

100−400 GeV. One can see that for g′ = 0.5 and vφ = 1.7 TeV, direct detection requires roughly

ε′ . 1− 2× 10−4 depending on the DM mass. In the limit y′ν , y
′′
ν ≈ 0, ε′ is due solely to Z −ZL
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Figure 4.7. DM-nucleon cross section in pb, as a function of the DM-Z
coupling parameter ε′ and of the DM mass (where MDM = mνX ), for vφ =
1.7 TeV, L′ = 2 and g′ = 0.5 which implies MZL = 2.55 TeV. The red
dashed line indicates the current limit from the XENON-100 experiment.

mixing and gives ε′ = sin ξ as defined in Eq.(4.5). Since MZL = 3g′vφ = 2.55 TeV, Eq.(4.5) and

Fig.4.2 together imply that direct detection signals roughly 20 times below the current bound

can be obtained for a gauge kinetic mixing parameter (see Eq.(4.4)) of ε ∼ 7 × 10−3, within

range of future direct detection experiments [87].

Dark matter can also be observed indirectly, by searching for the products of DM annihila-

tion. Here, the dark matter annihilates predominantly into charged leptons or neutrinos. While

there is a large rate into positrons, it is characterized by roughly the thermal relic cross section

and is thus quite a bit too small to account for the anomalous positron fraction observed by

PAMELA [88], Fermi [89], and AMS-02 [90]. At the same time, contributions to the anti-proton

flux are very tiny, evading constraints from PAMELA [91].
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Annihilation into charged leptons will also produce gamma rays as secondaries. Currently,

the tightest constraints on such production are from the Fermi LAT null observations of dwarf

spheroidal galaxies [92], which are just short of being able to rule out thermal cross sections for

dark matter masses around a few 10’s of GeV based on one sixth of the annihilations producing

τ+τ−. In the near future, such constraints are only relevant for νX dark matter which has been

produced non-thermally.

Dark matter may also annihilate directly into γγ and/or γZ at loop level, providing mono-

chromatic gamma ray lines, whose distinctive energy profile can help compensate for a tiny rate.

Predictions for the class of models including U(1)L were studied in [93], where it was found that

γγ, γZ, and γφ (if kinematically accessible) final states can be generated. The largest signal is

likely to be γφ, which is expected to be at least an order of magnitude below the current Fermi

bounds [94], but may be visible to future experiments.

The rate for dark matter to be captured in the Sun or Earth and then annihilate into high

energy neutrinos is controlled by the spin-dependent cross section which in turn is controlled by

the degree of Z −ZL mixing. Thus, despite a large annihilation fraction into SM neutrinos, the

precision constraints render it difficult to imagine an observable rate at ICECUBE in the near

future [95].

4.4. LHC Phenomenology and Constraints

The presence of new particles required by the U(1)L gauge symmetry leads to a variety of

potentially interesting LHC phenomenology. In this section we discuss various aspects of the

phenomenology of this model as well as the relevant constraints coming from the LHC. We also

examine in more detail the charged lepton sector and its effects on the Higgs decays.
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4.4.1. Exotic Charged Lepton Sector

Once Φ and H obtain expectation values, the Lagrangian for the exotic charged lepton sector

becomes,

L ⊃ −
c`vφ√

2
(1 +

φo
vφ

)e′′Re
′
L −

cevφ√
2

(1 +
φo
vφ

)e′′Le
′
R (4.25)

−y
′′
evh√

2
(1 +

ho
vh

)e′′Re
′′
L −

y′evh√
2

(1 +
ho
vh

)e′Le
′
R + h.c.

which gives a mass matrix of the same form as that found in the neutrino sector,

Me =
1√
2

 c`vφ y′′evh

y′evh cevφ

 . (4.26)

Again we can diagonalize viaMeD = U †LMeUR to obtain the mass eigenvalues and eigenstates.

The Lagrangian in Eq.(4.25) also leads to the interaction matrices for φo and ho given by,

N h
e =

vh√
2

 0 y′′e

y′e 0

 , N φ
e =

vφ√
2

 c` 0

0 ce

 , (4.27)

which upon the rotation performed to diagonalize Me gives interaction matrices in the mass

basis defined as Vφ = U †LN
φ
e UR and Vh = U †LN h

e UR. These matrices dictate the couplings of

the exotic leptons to φ and h. We note also that Eq.(4.26) is the same mass matrix in the

charged lepton sector considered in [60], with the difference being that in this model there are

no explicit mass terms. In particular, when vh, vφ → 0 all masses go to zero, which makes the

gauged lepton number model more constrained and relates the electroweak and lepton breaking

scales to the rate of Higgs decay to di-photons, as we will see below.
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A useful simplifying limit is c` ≈ ce ≡ ce and y′e ≈ y′′e ≡ ye in which case the charged leptons

are maximally mixed and one obtains the simple relations for the mass eigenvalues,

me1 ≈
1√
2

(cevφ − yevh)

me2 ≈
1√
2

(cevφ + yevh) , (4.28)

where we have assumed cevφ > yevh. Thus we see that for fixed ye and vφ, the mass of the

charged leptons is controlled by ce. Along with the scalar mixing discussed in Sec. 4.2.2 we now

have the pieces necessary for examining the modification to Higgs decays.

4.4.2. Modifications of Higgs Decays

Assuming that the Higgs can not decay directly into new particles, the primary effect of the new

lepton sector on Higgs decays will be through loop effects. From the discussion on Higgs mixing

in Sec.4.2.2, we can write the modification of the SM Higgs partial width as,

εi ≡
Γhi

ΓSMhoi
=
|M(h→ i)|2∣∣∣∣M(ho −−→

SM
i)

∣∣∣∣2
=
c2
θ |M(ho → i)− tθM(φo → i)|2∣∣∣∣M(ho −−→

SM
i)

∣∣∣∣2
, (4.29)

where we have used Eq.(4.8) and ΓSMhoi is the SM partial width to a final state i and Γhi is the

partial width for h to decay into i. The rate expected at the LHC relative to the SM can be

written as,

µi =
σ(j → h)

σ(j −−→
SM

ho)

B(h→ i)

B(ho −−→
SM

i)
= εj

ΓSMho
Γh

εi , (4.30)

where we have made use of the narrow width approximation, B signifies the branching fraction,

and the production channels are labeled j = V V, gg. We also define ΓSMho as the total SM Higgs
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width and Γh as the total decay width for the mass eigenstate h. Since this model does not

contain any new colored particles the only new effects entering εgg are through Higgs mixing

which gives εgg ≈ c2
θ. Since ZZ and WW already occur at tree level in the SM, we assume

the loop corrections due to the new leptons are negligible which implies the only effect again

comes from Higgs mixing, which gives εZZ = εWW ∼ c2
θ. Similarly for the SM Higgs Yukawa

interactions we have εY ∼ c2
θ.

This leaves the Zγ and γγ channels, which first occur at one loop in the SM, as the most

promising possibilities for these effects to manifest themselves. However, in Refs. [60, 96] the

modification to Zγ was shown to be only ∼ 5% for a corresponding γγ enhancement of ∼ 50%,

and to good approximation εZγ ∼ c2
θ. Thus, in addition to the universal c2

θ suppression from

Higgs mixing, the only additional modifications to the total decay width comes from the γγ

channel through loops of exotic charged leptons. Since for the modifications we are interested in

Γhγγ � Γh this implies ΓSMho /Γh ≈ c−2
θ which will cancel with the c2

θ in the production channels

εgg,V V . This gives finally for the relative rates µi = c2
θ for i 6= γγ and for the final modified

diphoton signal strength,

µγγ = εγγ . (4.31)

Using the approach and conventions of [97], which examined the similar gg → h process, we

can go on to obtain the exotic charged lepton contributions to the h→ γγ amplitudes (omitting

photon polarization vectors),

Mµν(ho → γγ) = (
α

2πvh
)
∑
i

(Vh)iiFF (τei)

mei

(
pν1p

µ
2 −

m2
h

2
gµν
)

Mµν(φo → γγ) = (
α

2πvφ
)
∑
i

(Vφ)iiFF (τei)

mei

(
pν1p

µ
2 −

m2
h

2
gµν
)
,

(4.32)
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where the index i = 1, 2 runs over the exotic charged lepton mass eigenstates found after

diagonalizing the mass matrix in Eq. (4.26), and FF are the fermonic loop functions with τei =

m2
h/4m

2
ei as defined in [97]. Note that the amplitudes in Eq.(4.32) are evaluated at mho = mh

and mφo = mh where mh is the physical scalar mass.

Using Eq.(4.29)-(4.32) we obtain,

µγγ =

∣∣∣∣∣∣
cθ
vh

FSM+
∑
i

(Vh)ii
mei

FF (τei )

− sθ
vφ

∑
i

(Vφ)ii
mei

FF (τei )

∣∣∣∣∣∣
2

∣∣∣FSM/vh∣∣∣2

= c2
θ

∣∣∣∣(1 + F−1
SM

∑
i

(Vh)ii
mei

FF (τei)

)
− tθ

(
F−1
SM

vh
vφ

∑
i

(Vφ)ii
mei

FF (τei)

)∣∣∣∣2 ,
(4.33)

where FSM is the SM loop function which includes the dominant and negative W± boson

contribution as well as the smaller and positive t-quark, which sum to give numerical value of

∼ −6.5 for mh = 125 GeV. Note only the diagonal entries in the interaction matrices (Vh)ii and

(Vφ)ii contribute in the h→ γγ loop.

After the approximations leading to the masses in Eq.(4.28), which give (Vφ)11 = (Vφ)22 ≈

cevφ/
√

2 and (Vh)11 = −(Vh)22 ≈ −yevh/
√

2, we obtain (approximately) for the modified signal

strength,

µγγ ' c2
θ

∣∣∣1− vh√
2FSM

[
ye

(FF (τe1)

me1

− FF (τe2)

me2

)
+ cetθ

(FF (τe1)

me1

+
FF (τe2)

me2

)]∣∣∣2, (4.34)

where me1,e2 are given in Eq.(4.28) and satisfy me1 < me2 . Remembering that FSM < 0 we

see in the limit tθ → 0 we have an enhancement in the diphoton rate in the presence of mostly

vector-like leptons entering through the ho component of h. This is, of course, expected from

the low energy Higgs theorems (see e.g. [60]). We see also that the contribution from Higgs

mixing is constructive for tθ > 0 and destructive for tθ < 0 which also corresponds to the sign
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of the coupling λhp in Eq.(4.6). In the limit ye → 0 the enhancement enters entirely through

Higgs mixing and thus requires large mixing angles and Yukawa coupling ce. In the realistic

limit vφ � vh, the e1 and e2 become almost purely vector-like and again the contribution only

enters through Higgs mixing via the φo component of h. However as vφ →∞ one also has tθ → 0

and the φo contribution eventually decouples from the h → γγ amplitude as vφ is taken large.

Eq.(4.34) is in agreement with [62] for the case where their explicit mass term is put to zero.

To avoid the constraints discussed in Sec. 4.2.5 we choose vφ = 1.7 TeV and take the

lightest charged lepton to have mass greater than mmin ∼ 100 GeV. Measurements of the Higgs

decays at the LHC indicate rates consistent with the SM with the possibility of a slight, though

not significant, enhancement in the diphoton channel [98]. Regardless this implies that these

fermions must be mostly ‘vector-like’ since otherwise their effects would lead to destructive

interference [60] with the SM contribution giving a reduced rate, which is disfavored. This

allows us to write,

me1 =
cevφ − yevh√

2
& mmin, (4.35)

which leads to a condition on the Yukawa coupling,

√
2mmin + yevh

vφ
. ce . 4π. (4.36)

where we have also indicated 4π as the perturbative upper bound.

Since the mixing angle will affect all decay channels, we perform a fit to the full Higgs

data [99, 100] set in the ce − θ plane for fixed ye = 0.8 and vφ = 1.7 TeV. We show in Fig. 4.8

the 1, 2, 3 σ regions (purple) for the favored parameter space where the grey band shows the

excluded region by LEP II for which me1 < 100 GeV. Values as large as θ ∼ ±0.5 give a good

fit to the Higgs data, while larger values are disfavored due to the cos θ suppression of the signal
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rates. We also show contours of the relative diphoton rate shown in the green curves, though

it is also worth noting that with the current data, the diphoton rate has no significant impact

on the quality of the fit. Negative values of the mixing angle correspond to λhp < 0 , which can

potentially lead to vacuum instabilities. On the other hand, positive values of θ ∼ 0.5 where

λhp > 0 lead to no instability and as shown in [62] can be made consistent with constraints

coming from the S and T parameters.

Choosing instead to fix ce = 0.3 and trading in ye for the lightest charged lepton mass, we

can examine contours of µγγ as a function of me1 and θ as seen in Fig. 4.9. Since the DM

mass serves as a lower bound on the charged lepton mass we see for the DM masses & 200 GeV

found in Sec.4.3 that modifications up to ∼ 10 − 20% can be obtained for θ ∼ 0.3 − 0.4 and

me1 & 200 GeV. Of course one can lower this bound by considering larger values of L′ as can be

seen in Fig. 4.4, or by tuning the ZL mass such that the DM annihilation is resonantly enhanced.

Allowing ce and ye to vary instead while fixing θ = 0.4 and vφ = 1.7 TeV, we show µγγ

contours in the ce − ye plane in Fig. 4.10. As can be seen, observable modifications can be

obtained for O(1) values of the Yukawa couplings for which vacuum stability issues can be

avoided [62]. For these ranges of Yukawa couplings, me1 lies in the range 100− 500 GeV, such

that the exotic leptons can be produced at the LHC. We will discuss possible collider signatures

below.

If one is willing to push the Yukawa couplings as large as the perturbative limit ∼ 4π, one

can realize large deviations in µγγ even for multi-TeV masses. In Figure 4.11, we show the

deviation in the plane of me1-me2 for fixed vφ = 1.7 TeV, right above the LEP II limit. Even

for a lightest exotic charged lepton with mass me1 ∼ 2 − 3 TeV, one can obtain appreciable

modifications to the Higgs diphoton rate, reflecting the fact that the fermion masses here are

purely the result of Yukawa couplings, and thus do not exhibit decoupling [102]. Of course,

all exotic contributions to the h → γγ amplitude decouple in the limit of vφ → ∞. It should
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Figure 4.8. Fits to the full Higgs data set in the ce − θ plane for ye = 0.8
and vφ = 1.7 TeV. Here the purple contours show the 1, 2, 3σ regions while
the grey band shows the LEP excluded region the green lines are contours
of constant µγγ. Details on the fitting procedure can be found in [101].

also be noted that the required large Yukawa couplings can induce vacuum instabilities in the

Higgs potential at scales close to the masses of the exotic leptons. Additional structures like

supersymmetry would be required to restore vacuum stability. Some work in this direction

recently appeared in [65, 66, 103].

4.4.3. Other Potential LHC Signatures

Since the LHC is a hadron machine, weakly coupled extensions of the SM such as the model

presented here are not heavily constrained by the current LHC data. Currently, constraints on

the masses of the new leptons and of ZL mostly derive from the LEP experiments. Exotic charged

leptons must be heavier than about 100 GeV for consistency with direct search limits. The ZL
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Figure 4.9. Contours of relative diphoton rate as a function of θ and lightest
exotic charged lepton mass me1 .

mass should be larger than the LEP-2 center-of-mass energy of 209 GeV, and furthermore its

coupling s subject to the constraint MZL = 3g′vφ where vφ ≥ 1.7 TeV (and we have neglected

any kinetic mixing with the Z boson).

One of the defining features of our model is ZL, the gauge boson of the lepton number

symmetry. Since it does not couple to quarks, it is difficult to produce at the LHC. The most

promising option is to radiate a ZL from a pair of Drell-Yan produced leptons, in the process

pp→ `+`−ZL. The cross section for this process is calculated using the program CALCHEP [20]

with the MRST2002 PDF set [104] and shown in Fig. 4.12, where one can see it is at most of

order 10−2 fb at the 14 TeV LHC. As long as the new leptons are heavier than half the ZL

mass, the gauge boson will decay into charged SM leptons with a branching ratio of 50%, while

the other 50% are into neutrinos (recalling there are three light νRi in this model). The final
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state with four charged leptons, two of which reconstruct the ZL mass, is essentially background

free. Nevertheless even at a possible high luminosity upgrade of the LHC with 3 ab−1 it will be

difficult to probe ZL masses above 500 GeV.

Pairs of charged and neutal leptons can be pair produced at the LHC in the Drell-Yan

process. The cross sections for the different processes at the 14 TeV LHC are shown in Fig. 4.13,

and were again obtained using CALCHEP. The processes are similar to chargino/neutralino

pair production, for which NLO corrections are moderate [105]. For this plot we have assumed

that the lepton masses are given by Eq. (4.16) and Eq. (4.28). This leads to the following mass

hierarchies for the exotic lepton sector,

me2 > mν4 > me1 > mνX . (4.37)
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In this limit the mass splitting between e1 and e2 is given by me2 − me1 =
√

2yevh while

mν4−me1 = 1√
2
yevh. For ye ∼ 0.8 this gives a mass splitting of ∼ 280 GeV between the charged

leptons and a splitting of ∼ 140 GeV between e1 and ν4. Note also that for ye ∼ 0.8 and the

me1 range 100 GeV − 500 GeV shown in Fig. 4.13 one also has 0.2 . ce . 0.53. The cross

sections can be as large as one pb for particle masses close to the LEP limits, and up to 50 fb

for particle masses in the several hundred GeV range.

The decays of the exotic leptons will lead to a number of signatures at the LHC via their

decays to electroweak gauge and Higgs bosons as well as DM. In the limits leading to Eq.(4.16)

and Eq.(4.28) the heavy charged state e2 can have the following decay chain,

e2 →Wν4 →WWe1 →WWWνX . (4.38)
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Figure 4.12. Cross section for the process pp→ `+`−ZL at the 14 TeV LHC,
for vφ = 1.7 TeV, and summed over SM leptons, `± = e±, µ±, τ±.
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Figure 4.13. Cross sections for the pair production of exotic leptons at the
14 TeV LHC, as a function of the lightest charged lepton mass me1 in the
limit leading to Eqs.(4.16) and (4.28). For the processes involving e±2 and
ν4 we have assumed that me2 = me1 + 280 GeV which implies mν4 =
me1 + 140 GeV.

Note that although we are neglecting mass mixing between νX and ν4 by assuming yν � 1, it

must be non-zero for the the heavy leptons to decay down to the DM.
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One can also have the heavy charged state decaying to DM more directly via,

e2 →WhνX , e2 →WZνX , e2 →WνX , (4.39)

while the light charged state only has one tree level decay,

e1 →WνX . (4.40)

The heavy neutrino state ν4 can decay via Z and h bosons through,

ν4 → ZνX , ν4 → hνX , (4.41)

as well as W bosons through,

ν4 →We1 →WWνX . (4.42)

Thanks to the large mass differences between the particles, all intermediate gauge bosons are on-

shell, such that their final states can easily be reconstructed at the LHC. These decay patterns

can change in more general lepton mixing scenarios, but should offer promising channels at the

LHC.

For low masses, we see from Fig.4.13 that e+
1 e
−
1 has the largest production rate. Assuming

leptonic decays of the W -bosons, this leads to a signature

pp→ e+
1 e
−
1 →WWE/T → l+l−E/T . (4.43)

For larger masses the e+
1 ν4 channel becomes dominant, and can give rise to a striking trilepton

signature through

pp→ e+
1 ν4 →WZE/T → l+l+l−E/T . (4.44)
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The signatures are similar to those from production of weakly charged supersymmetric particles

at the LHC. While limits can be obtained in special cases from the 8 TeV run of the LHC, we

expect that at least 100 fb−1 at the 14 TeV LHC are needed to probe the exotic lepton sector

at the LHC.

For light enough φ there is also the potential to produce it resonantly at the LHC through

Higgs mixing. This scalar would inherit the SM Higgs decays, but be suppressed by s2
θ. Addi-

tionally, if kinematically allowed φ can also have the following decays to heavy leptons and dark

matter,

φ→ e1e1 , φ→ e2e2

φ→ e1e2 , φ→ ν4νX

(4.45)

It can of course also decay to Higgs pairs φ→ hh when kinematically allowed. As discussed in

Sec.4.2.5, however, for vφ ∼ 1.7 TeV we typically have φ in the TeV range (see Fig.4.1) making

it phenomenologically irrelevant for much of the parameter space.

4.5. Conclusions/Outlook

We have constructed a theory based on the gauging of lepton number, and found that for

many choices of the parameters, the exotic leptons required to cancel gauge anomalies contain

a dark matter candidate whose thermal relic density naturally saturates the requirements of

cosmological observation. The dark matter is a Dirac (mostly singlet) neutrino and we find

that masses & 200 GeV give the correct thermal relic abundance via annihilation through the

massive vector boson associated with the gauged lepton number. Higgs scalar mixing as well as
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gauge kinetic mixing which are found in this model also allow for a direct detection signal and

give reasonably good prospects for detection in near future experiments.

The theory introduces only one new scale, the vacuum expectation value of a SM singlet

scalar which breaks the lepton number and is constrained by experiment to be & 1.7 TeV. The

global symmetry which stabilizes the dark matter is a consequence of the gauge structure and

particle content of the the theory and does not need to be additionally imposed. Furthermore,

as a consequence of the lepton number breaking, the dark matter is also accompanied by a set of

vector like leptons charged under the SM gauge group with couplings to the SM Higgs. The same

global symmetry which stabilizes the dark matter also prevents any dangerous flavor changing

neutral currents or mass mixing with SM leptons. For a lepton breaking scale ∼ 1.7 TeV

phenomenologically viable dark matter and exotic vector-like leptons can be obtained.

The model contains a variety of potential LHC signals, though rates will be challenging.

Some of the signatures, such as a four lepton final state with a ZL resonance in two of the

leptons are fairly novel and specific, but otherwise most LHC phenomenology resembles other

vector like lepton constructions along with singlet scalar phenomenology. The 14 TeV run of the

LHC should be able to probe some of the parameter space in the exotic lepton sector, although

an e+e− collider with center of mass energies between 250 GeV and 500 GeV is more suitable

for this task. Unless the ZL is very light, direct production is unlikely to be observable at the

LHC. The indirect effect on four lepton interactions can however be probed at a linear collider,

vastly extending the reach of the LEP experiments.

The exotic charged leptons can also lead to observable modifications of the Higgs decays

and in particular to h → γγ, which is also affected by Higgs mixing. We have examined these

effects for a range of model parameters and lepton masses which can potentially be produced

at the LHC. Potential vacuum stability issues due to the presence of charged leptons with O(1)

couplings to the Higgs can be alleviated with the presence of the gauge and scalar sector of this
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model, but one can also easily embed it into a more fundamental UV completion which would

presumably solve such problems.

While U(1)L is an attractive gauge symmetry, which may contribute to the answer as to how

dark matter can be massive and yet remain stable, many open questions remain in the current

construction. For example, the hierarchy problem remains unaddressed, and almost certainly

would require more structure and would lead to new phenomena. The current construction

automatically contains new massive states as well as new interactions potentially containing

CP -violating phases, which may be useful for explaining the baryon asymmetry of the Universe.

One can also easily imagine embedding this model into a supersymmetric version or some other

construction which solves the hierarchy problem or generates the lepton breaking scale naturally,

but we leave these possibilities to a future study.
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APPENDIX A

Appendix

A.1. Angular Distributions

In this Appendix we examine the various differential spectrums for the golden channel in

more detail. The general scalar and background differential spectra are too cumbersome to write

in one page1 for most of the different components. We give a couple of the simplest ones here,

but that are not found in literature. We also examine how the different signal hypotheses and

background components contribute to the various kinematic distributions. We show a multitude

of singly and doubly differential distributions for both signal and background. Of course none of

these plots can show the discriminating power of the fully differential cross section, but one can

visually get a sense for the discriminating power of these kinematic variables. Detector effects

will also shape these distributions and deserve careful study, but it is clear that the golden

channel is a powerful probe of the underlying physics.

A.1.1. Analytic Expressions

We give here a pair of analytic expressions for the differential mass spectra for one of the signal

and one of the background components which are simple enough to fit on one page. Although

not as powerful as using the fully differential cross section, with just these two relatively simple

expressions one can perform robust analyses of the newly discovered scalar and its coupling to

neutral gauge bosons as suggested in [12]. For the signal we give the ϕ → ZZ + Zγ → 2e2µ

differential mass spectrum including interference. For the ZZ coupling we take only the ‘SM-

like’ coupling A1ZZ to be non-zero. For the Zγ coupling we allow for both A2Zγ and A3Zγ to

1The distributions will be made public in the near future, but can be obtained from the corresponding
author in the meantime.
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be non-zero, thus allowing for CP violation. Using Eq.(2.13) we obtain,
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1 dM
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2

=
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(A.1)

where we define,

β1,2 =

√√√√1− 4M2
1(

1± (M2
1 −M2

2 )/s
)2

s
. (A.2)

This expression is frame invariant and can accommodate a Higgs-like particle with SM

couplings to ZZ, but with perhaps new physics contributions through its couplings to Zγ.

The el are the photon couplings to charged leptons while gL,R are the leptonic Z couplings.

M1 and M2 are the final state lepton pair invariant masses while mZ is the mass of the

Z boson and
√
s is the four lepton system invariant mass. The doubly differential mass

spectrum for the full t + u component of the background (sum of components B-E) can
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be obtained analytically via Eq. (2.30) to give,
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. (A.3)

This expression includes the ZZ, Zγ and γγ contributions including all interference and

can be combined with pdfs or be used for a leptonic initial state. The eq are the photon

couplings to the initial state fermions while the gqR/L are the initial state fermion couplings

to Z bosons. Note that these expressions have not been normalized and should be thought

of as at fixed s.

A.1.2. Singly Differential Angular Distributions

In Fig. A.1-A.5 we show the angular distributions for the 5 angles (cos Θ, cos θ1, cos θ2,Φ1,Φ)

found in the four lepton system and defined in Sec. 3.1. We plot the angular distributions

for signal hypotheses 1-5 defined in Sec. 2.3.2 and also show the various background com-

ponents defined in Sec. 2.4.2. For all distributions the phase space is defined as 4 GeV

< M1 < 120 GeV and 4 GeV < M2 < 120 GeV with
√
ŝ = 125 GeV for signal and

110 GeV <
√
ŝ < 140 GeV for background.
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Since we are considering a spin-0 scalar as our signal, the cos Θ and Φ1 are of course

flat, but are still useful for discriminating between signal and background. A particularly

interesting variable is the azimuthal angle between the lepton decay planes, Φ. This is

especially sensitive to the various interference effects as well as the CP properties of the

decaying scalar, as was pointed out in [26]. One can see that the different signal hypothesis

affect the modulation of Φ while an extreme case like the CP violating hypothesis 5 can

lead to a striking signal in the form of an asymmetric modulation and phase shift relative

to the SM prediction.

For the background we can see how the various components contribute to the different

kinematic variables. It is clear that the Zγ t+ u component (D) is the dominant contri-

bution for our defined phase space. Note however, that the s-channel component (A) also

contributes and in particular is the dominant contribution to the modulation of Φ. We

can also see that the resonant process affects cos θ1 and cos θ2, especially in the forward

regions. It is also interesting to comment that the γγ contribution (B) is featureless in

all of the distributions except for a small upward slope in the extreme forward directions

of cos Θ. Note that for the Φ1 azimuthal angle, the modulation is due entirely to the

Zγ t + u component (D). Whether these different effects can still be seen once detector

effects are included requires careful study which we leave for future work.

A.1.3. Doubly Differential spectra

In Fig. A.6-A.12 we show various combinations of the doubly differential spectra for the

five signal hypotheses as well as the full background. These are primarily for illustration

purposes, but from these one can get an idea of the correlations between the different
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Figure A.1. On the left hand side we have plotted the cos Θ angular distri-
butions for hypotheses 1-5 (hypothesis 1 ≡ SM) defined in Sec.2.3.2. On
the right hand side we plot the components A-F of the background defined
in Sec.2.4.2.
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Figure A.2. On the left hand side we have plotted the cos θ1 angular dis-
tributions for hypotheses 1-5 (hypothesis 1 ≡ SM) defined in Sec.2.3.2. On
the right hand side we plot the components A-F of the background defined
in Sec.2.4.2.

kinematic variables2. For these plots only the five signal hypotheses and the full result

for the background are shown. For all distributions the phase space is defined as 4 GeV

< M1 < 120 GeV and 4 GeV < M2 < 120 GeV with
√
ŝ = 125 GeV for signal and

110 GeV <
√
ŝ < 140 GeV for background.

2We do not show all possible combinations, but any not shown here can be obtained by emailing the
corresponding author
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Figure A.3. On the left hand side we have plotted the cos θ2 angular dis-
tributions for hypotheses 1-5 (hypothesis 1 ≡ SM) defined in Sec.2.3.2. On
the right hand side we plot the components A-F of the background defined
in Sec.2.4.2.
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Figure A.4. On the left hand side we have plotted the Φ angular distribu-
tions for hypotheses 1-5 (hypothesis 1 ≡ SM) defined in Sec.2.3.2. On the
right hand side we plot the components A-F of the background defined in
Sec.2.4.2.
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Figure A.5. On the left hand side we have plotted the Φ1 angular distribu-
tions for hypotheses 1-5 (hypothesis 1 ≡ SM) defined in Sec.2.3.2. On the
right hand side we plot the components A-F of the background defined in
Sec.2.4.2.
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Figure A.6. The (M2, cos Θ) doubly differential spectrum. The first five
distributions are for signal hypotheses 1-5 (hypothesis 1 ≡ SM in top left)
defined in Sec.2.3.2 while the bottom right plot is for the full background.
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Figure A.7. The (M2, cos θ1) doubly differential spectrum. The first five
distributions are for signal hypotheses 1-5 (hypothesis 1 ≡ SM in top left)
defined in Sec.2.3.2 while the bottom right plot is for the full background.
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Figure A.8. The (M2,Φ) doubly differential spectrum. The first five distri-
butions are for signal hypotheses 1-5 (hypothesis 1 ≡ SM in top left) defined
in Sec.2.3.2 while the bottom right plot is for the full background.
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Figure A.9. The (cos θ2,Φ1) doubly differential spectrum. The first five
distributions are for signal hypotheses 1-5 (hypothesis 1 ≡ SM in top left)
defined in Sec.2.3.2 while the bottom right plot is for the full background.
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Figure A.10. The (cos θ1, cos θ2) doubly differential spectrum. The first five
distributions are for signal hypotheses 1-5 (hypothesis 1 ≡ SM in top left)
defined in Sec.2.3.2 while the bottom right plot is for the full background.
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Figure A.11. The (Φ, cos θ1) doubly differential spectrum. The first five
distributions are for signal hypotheses 1-5 (hypothesis 1 ≡ SM in top left)
defined in Sec.2.3.2 while the bottom right plot is for the full background.
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Figure A.12. The (Φ,Φ1) doubly differential spectrum. The first five dis-
tributions are for signal hypotheses 1-5 (hypothesis 1 ≡ SM in top left)
defined in Sec.2.3.2 while the bottom right plot is for the full background.
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